
Drools Planner User Guide

iii

... vii

1. Planner introduction .. 1

1.1. What is Drools Planner? ... 1

1.2. What is a planning problem? ... 1

1.2.1. A planning problem is NP-complete .. 1

1.2.2. A planning problem has (hard and soft) constraints 2

1.2.3. A planning problem has a huge search space .. 3

1.3. Status of Drools Planner ... 3

1.4. Get Drools Planner and run the examples .. 3

1.4.1. Get the release zip and run the examples ... 3

1.4.2. Run the examples in an IDE (IntelliJ, Eclipse, NetBeans) 4

1.4.3. Get it with maven, gradle, ivy, buildr or ANT .. 4

1.4.4. Build it from source .. 5

1.5. Questions, issues and blog ... 5

2. Use cases and examples ... 7

2.1. Introduction .. 7

2.2. N queens example .. 7

2.2.1. Problem statement ... 7

2.2.2. Solution(s) ... 8

2.2.3. Screenshot .. 8

2.2.4. Problem size .. 9

2.2.5. Domain model .. 10

2.3. Cloud balancing example .. 12

2.3.1. Problem statement ... 12

2.3.2. Domain model .. 14

2.4. Machine reassignment example (ROADEF 2012) .. 14

2.4.1. Problem statement ... 14

2.4.2. Problem size .. 15

2.5. Manners 2009 example ... 16

2.5.1. Problem statement ... 16

2.6. Traveling Salesman Problem example (TSP) .. 16

2.6.1. Problem statement ... 16

2.7. Traveling Tournament Problem example (TTP) ... 16

2.7.1. Problem statement ... 16

2.7.2. Simple and smart implementation .. 18

2.7.3. Problem size .. 18

2.8. Curriculum course scheduling example (ITC 2007 track 3) 19

2.8.1. Problem statement ... 19

2.9. Examination timetabling example (ITC 2007 track 1) ... 19

2.9.1. Problem statement ... 19

2.9.2. Problem size .. 21

2.9.3. Domain model .. 21

2.10. Patient admission scheduling (hospital bed planning) example (PAS) 23

2.10.1. Problem statement ... 23

Drools Planner User Guide

iv

2.11. Nurse rostering example (INRC 2010) .. 24

2.11.1. Problem statement ... 24

3. Planner configuration .. 29

3.1. Overview .. 29

3.2. Solver configuration .. 29

3.2.1. Solver configuration by XML file .. 29

3.2.2. Solver configuration by Java API ... 30

3.3. Model your planning problem ... 31

3.3.1. Is this class a problem fact or planning entity? ... 31

3.3.2. Problem fact .. 32

3.3.3. Planning entity and planning variables ... 33

3.3.4. Planning value and planning value ranges ... 38

3.3.5. Planning problem and planning solution ... 42

3.4. Solver ... 48

3.4.1. The Solver interface ... 48

3.4.2. Solving a problem .. 48

3.4.3. Environment mode: Are there bugs in my code? 49

3.4.4. Logging level: What is the Solver doing? ... 51

4. Score calculation with a rule engine ... 53

4.1. Rule based score calculation ... 53

4.2. Choosing a Score implementation .. 53

4.2.1. The ScoreDefinition interface .. 53

4.2.2. SimpleScore .. 53

4.2.3. HardAndSoftScore .. 54

4.2.4. Implementing a custom Score ... 54

4.3. Defining the score rules source ... 54

4.3.1. A scoreDrl resource on the classpath .. 54

4.3.2. A RuleBase (possibly defined by Guvnor) .. 55

4.4. Implementing a score rule ... 55

4.5. Aggregating the score rules into the Score ... 56

4.6. Delta based score calculation .. 58

4.7. Tips and tricks .. 59

5. Optimization algorithms ... 61

5.1. The size of real world problems ... 61

5.2. The secret sauce of Drools Planner ... 61

5.3. Optimization algorithms overview ... 62

5.4. Which optimization algorithms should I use? ... 63

5.5. SolverPhase ... 64

5.6. Termination .. 65

5.6.1. TimeMillisSpendTermination .. 65

5.6.2. ScoreAttainedTermination ... 66

5.6.3. StepCountTermination .. 67

5.6.4. UnimprovedStepCountTermination .. 67

5.6.5. Combining Terminations ... 67

v

5.6.6. Asynchronous termination from another thread ... 68

5.7. Custom SolverPhase ... 68

6. Exact methods ... 71

6.1. Overview .. 71

6.2. Brute Force .. 71

6.2.1. Algorithm description .. 71

6.2.2. Configuration .. 73

6.3. Branch and bound .. 73

6.3.1. Algorithm description .. 73

6.3.2. Configuration .. 75

7. Construction heuristics ... 77

7.1. Overview .. 77

7.2. First Fit .. 77

7.2.1. Algorithm description .. 77

7.2.2. Configuration .. 79

7.3. First Fit Decreasing ... 79

7.3.1. Algorithm description .. 79

7.3.2. Configuration .. 81

7.4. Best Fit .. 81

7.4.1. Algorithm description .. 81

7.4.2. Configuration .. 81

7.5. Best Fit Decreasing .. 82

7.5.1. Algorithm description .. 82

7.5.2. Configuration .. 82

7.6. Cheapest insertion .. 82

7.6.1. Algorithm description .. 82

7.6.2. Configuration .. 82

8. Local search solver ... 83

8.1. Overview .. 83

8.2. Hill climbing (simple local search) .. 83

8.2.1. Algorithm description .. 83

8.3. Tabu search ... 83

8.3.1. Algorithm description .. 83

8.4. Simulated annealing .. 83

8.4.1. Algorithm description .. 83

8.5. About neighborhoods, moves and steps ... 83

8.5.1. A move .. 83

8.5.2. Move generation .. 87

8.5.3. A step ... 88

8.5.4. Getting stuck in local optima ... 91

8.6. Deciding the next step .. 92

8.6.1. Selector ... 93

8.6.2. Acceptor .. 94

8.6.3. Forager .. 96

Drools Planner User Guide

vi

8.7. Best solution ... 98

8.8. Using a custom Selector, Acceptor, Forager or Termination 98

9. Evolutionary algorithms ... 99

9.1. Overview .. 99

9.2. Evolutionary Strategies .. 99

9.3. Genetic algorithms .. 99

10. Benchmarking and tweaking .. 101

10.1. Finding the best configuration .. 101

10.2. Building a Benchmarker ... 101

10.2.1. Adding the exta dependency ... 101

10.2.2. Building a basic Benchmarker ... 101

10.2.3. Warming up the hotspot compiler .. 104

10.3. Summary statistics .. 104

10.3.1. Best score summary ... 104

10.4. Statistics per data set (graph and CSV) .. 106

10.4.1. Best score over time statistic (graph and CSV) 106

10.4.2. Calculate count per second statistic (graph and CSV) 108

10.4.3. Memory use statistic (graph and CSV) ... 110

11. Repeated planning ... 113

11.1. Introduction to repeated planning ... 113

11.2. Backup planning ... 113

11.3. Continuous planning (windowed planning) .. 113

11.4. Real-time planning (event based planning) .. 115

Index ... 119

vii

viii

Chapter 1.

1

Chapter 1. Planner introduction

1.1. What is Drools Planner?

Drools Planner [http://www.jboss.org/drools/drools-planner] optimizes planning problems.

It solves use cases, such as:

• Employee shift rostering: timetabling nurses, repairmen, ...

• Agenda scheduling: scheduling meetings, appointments, maintenance jobs,

advertisements, ...

• Educational timetabling: scheduling lessons, courses, exams, conference presentations, ...

• Vehicle routing: planning vehicles (trucks, trains, boats, airplanes, ...) with freight and/or people

• Bin packing: filling containers, trucks, ships and storage warehouses, but also cloud computers

nodes, ...

• Job shop scheduling: planning car assembly lines, machine queue planning, workforce task

planning, ...

• Cutting stock: minimizing waste while cutting paper, steel, carpet, ...

• Sport scheduling: planning football leagues, baseball leagues, ...

• Financial optimization: investment portfolio optimization, risk spreading, ...

Every organization faces planning problems: provide products and services with a limited set of

constrained resources (employees, assets, time and money).

Drools Planner enables normal JavaTM programmers to solve planning problems efficiently. Under

the hood, it combines optimization algorithms (including Metaheuristics such as Tabu Search and

Simulated Annealing) with the power of score calculation by a rule engine.

Drools Planner, like the rest of Drools, is business-friendly open source software under

the Apache Software License 2.0 [http://www.apache.org/licenses/LICENSE-2.0] (layman's

explanation [http://www.apache.org/foundation/licence-FAQ.html#WhatDoesItMEAN]).

1.2. What is a planning problem?

1.2.1. A planning problem is NP-complete

All the use cases above are probably NP-complete [http://en.wikipedia.org/wiki/NP-complete]. In

layman's terms, this means:

• It's easy to verify a given solution to a problem in reasonable time.

http://www.jboss.org/drools/drools-planner
http://www.jboss.org/drools/drools-planner
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/foundation/licence-FAQ.html#WhatDoesItMEAN
http://www.apache.org/foundation/licence-FAQ.html#WhatDoesItMEAN
http://www.apache.org/foundation/licence-FAQ.html#WhatDoesItMEAN
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP-complete

Chapter 1. Planner introduction

2

• There is no silver bullet to find the optimal solution of a problem in reasonable time (*).

Note

(*) At least, none of the smartest computer scientists in the world have found such

a silver bullet yet. But if they find one for 1 NP-complete problem, it will work for

every NP-complete problem.

In fact, there's a $ 1,000,000 reward for anyone that proves if such a silver bullet

actually exists or not [http://en.wikipedia.org/wiki/P_%3D_NP_problem].

The implication of this is pretty dire: solving your problem is probably harder than you anticipated,

because the 2 common techniques won't suffice:

• A brute force algorithm (even a smarter variant) will take too long.

• A quick algorithm, for example in bin packing, putting in the largest items first, will return a

solution that is usually far from optimal.

Drools Planner does find a good solution in reasonable time for such planning problems.

1.2.2. A planning problem has (hard and soft) constraints

Usually, a planning problem has at least 2 levels of constraints:

• A (negative) hard constraint must not be broken. For example: 1 teacher can not teach 2 different

lessons at the same time.

• A (negative) soft constraint should not be broken if it can be avoided. For example: Teacher A

does not like to teach on Friday afternoon.

Some problems have positive constraints too:

• A positive soft constraint (or reward) should be fulfilled if possible. For example: Teacher B likes

to teach on Monday morning.

In practice, these are just like negative soft constraints, but with a positive weight.

Some toy problems (such as N Queens) only have hard constraints. Some problems have 3 or

more levels of constraints, for example hard, medium and soft constraints.

These constraints define the score function (AKA fitness function) of a planning problem. Each

solution of a planning problem can be graded with a score. Because we 'll define these constraints

as rules in the Drools Expert rule engine, adding constraints in Drools Planner is easy and

scalable.

http://en.wikipedia.org/wiki/P_%3D_NP_problem
http://en.wikipedia.org/wiki/P_%3D_NP_problem
http://en.wikipedia.org/wiki/P_%3D_NP_problem

A planning problem has a huge search space

3

1.2.3. A planning problem has a huge search space

A planning problem has a number of solutions. There are several categories of solutions:

• A possible solution is a solution that does or does not break any number of constraints. Planning

problems tend to have a incredibly large number of possible solutions. Most of those solutions

are worthless.

• A feasible solution is a solution that does not break any (negative) hard constraints. The number

of feasible solutions tends to be relative to the number of possible solutions. Sometimes there

are no feasible solutions. Every feasible solution is a possible solution.

• An optimal solution is a solution with the highest score. Planning problems tend to have 1 or a

few optimal solutions. There is always at least 1 optimal solution, even in the case that there

are no feasible solutions and the optimal solution isn't feasible.

• The best solution found is the solution with the highest score found by an implementation in a

given amount of time. The best solution found is likely to be feasible.

Counterintuitively, the number of possible solutions is huge (if calculated correctly), even with a

small dataset. As you'll see in the examples, most instances have a lot more possible solutions

than the minimal number of atoms in the known universe (10^80). Because there is no silver bullet

to find the optimal solution, any implementation is forced to evaluate at least a subset of all those

possible solutions.

Drools Planner supports several optimization algorithms to efficiently wade through that incredibly

large number of possible solutions. Depending on the use case, some optimization algorithms

perform better than others. In Drools Planner it is easy to switch the optimization algorithm,

by changing the solver configuration in a few XML lines or by API.

1.3. Status of Drools Planner

Drools Planner is production ready. The API is almost stable but

backward incompatible changes can occur. With the recipe called

UpgradeFromPreviousVersionRecipe.txt [https://github.com/droolsjbpm/drools-planner/blob/

master/drools-planner-distribution/src/main/assembly/filtered-resources/

UpgradeFromPreviousVersionRecipe.txt] you can easily upgrade and deal with any backwards

incompatible changes between versions. That recipe file is included in every release.

1.4. Get Drools Planner and run the examples

1.4.1. Get the release zip and run the examples

You can download a release zip of Drools Planner from the Drools download site [http://

www.jboss.org/drools/downloads.html]. Unzip it. To run an example, just open the directory

https://github.com/droolsjbpm/drools-planner/blob/master/drools-planner-distribution/src/main/assembly/filtered-resources/UpgradeFromPreviousVersionRecipe.txt
https://github.com/droolsjbpm/drools-planner/blob/master/drools-planner-distribution/src/main/assembly/filtered-resources/UpgradeFromPreviousVersionRecipe.txt
https://github.com/droolsjbpm/drools-planner/blob/master/drools-planner-distribution/src/main/assembly/filtered-resources/UpgradeFromPreviousVersionRecipe.txt
https://github.com/droolsjbpm/drools-planner/blob/master/drools-planner-distribution/src/main/assembly/filtered-resources/UpgradeFromPreviousVersionRecipe.txt
http://www.jboss.org/drools/downloads.html
http://www.jboss.org/drools/downloads.html
http://www.jboss.org/drools/downloads.html

Chapter 1. Planner introduction

4

examples and run the script (runExamples.sh on Linux and Mac or runExamples.bat on

Windows) and pick an example in the GUI:

$ cd examples

$./runExamples.sh

$ cd examples

$ runExamples.bat

1.4.2. Run the examples in an IDE (IntelliJ, Eclipse, NetBeans)

To run the examples in your favorite IDE, first configure your IDE:

• In IntelliJ and NetBeans, just open the file examples/sources/pom.xml as a new project, the

maven integration will take care of the rest.

• In Eclipse, open a new project for the directory examples/sources.

• Add all the jars to the classpath from the directory binaries and the directory examples/

binaries, except for the file examples/binaries/drools-planner-examples-*.jar.

• Add the java source directory src/main/java and the java resources directory src/main/

resources.

Next, create a run configuration:

• Main class: org.drools.planner.examples.app.DroolsPlannerExamplesApp

• VM parameters (optional): -Xmx512M -server

• Working directory: examples (this is the directory that contains the directory data)

1.4.3. Get it with maven, gradle, ivy, buildr or ANT

The Drools Planner jars are available on the central maven repository [http://search.maven.org/

#search|ga|1|org.drools.planner] (and the JBoss maven repository [https://repository.jboss.org/

nexus/index.html#nexus-search;gav~org.drools.planner~~~~]).

If you use maven, just add a dependency to drools-planner-core in your project's pom.xml:

 <dependency>

 <groupId>org.drools.planner</groupId>

 <artifactId>drools-planner-core</artifactId>

http://search.maven.org/#search|ga|1|org.drools.planner
http://search.maven.org/#search|ga|1|org.drools.planner
http://search.maven.org/#search|ga|1|org.drools.planner
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.drools.planner~~~~
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.drools.planner~~~~
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.drools.planner~~~~

Build it from source

5

 <version>5.x</version>

 </dependency>

This is similar for gradle, ivy and buildr.

If you're still using ant (without ivy), copy all the jars from the download zip's binaries directory

and manually verify that your classpath doesn't contain duplicate jars.

1.4.4. Build it from source

You can also easily build it from source yourself.

Set up Git [http://help.github.com/set-up-git-redirect] and clone drools-planner from GitHub (or

alternatively, download the zipball [https://github.com/droolsjbpm/drools-planner/zipball/master]):

$ git clone git@github.com:droolsjbpm/drools-planner.git drools-planner

...

Then do a Maven 3 [http://maven.apache.org/] build:

$ cd drools-planner

$ mvn -DskipTests clean install

...

After that, you can run any example directly from the command line, just run this command and

pick an example:

$ cd drools-planner-examples

$ mvn exec:exec

...

1.5. Questions, issues and blog

Your questions and comments are welcome on the user mailing list [http://www.jboss.org/

drools/lists.html]. Start the subject of your mail with [planner]. You can read/

write to the user mailing list without littering your mailbox through this web forum

[http://drools.46999.n3.nabble.com/Drools-User-forum-f47000.html] or this newsgroup [nntp://

news.gmane.org/gmane.comp.java.drools.user].

Feel free to report an issue (such as a bug, improvement or a new feature request) for the

Drools Planner code or for this manual to the drools issue tracker [https://jira.jboss.org/jira/browse/

JBRULES]. Select the component drools-planner.

http://help.github.com/set-up-git-redirect
http://help.github.com/set-up-git-redirect
https://github.com/droolsjbpm/drools-planner/zipball/master
https://github.com/droolsjbpm/drools-planner/zipball/master
http://maven.apache.org/
http://maven.apache.org/
http://www.jboss.org/drools/lists.html
http://www.jboss.org/drools/lists.html
http://www.jboss.org/drools/lists.html
http://drools.46999.n3.nabble.com/Drools-User-forum-f47000.html
http://drools.46999.n3.nabble.com/Drools-User-forum-f47000.html
nntp://news.gmane.org/gmane.comp.java.drools.user
nntp://news.gmane.org/gmane.comp.java.drools.user
nntp://news.gmane.org/gmane.comp.java.drools.user
https://jira.jboss.org/jira/browse/JBRULES
https://jira.jboss.org/jira/browse/JBRULES
https://jira.jboss.org/jira/browse/JBRULES

Chapter 1. Planner introduction

6

Pull requests (and patches) are very welcome and get priority treatment! Include the pull request

link to a JIRA issue and optionally send a mail to the dev mailing list to get the issue fixed fast.

By open sourcing your improvements, you 'll benefit from our peer review, improvements made

upon your improvements and maybe even a thank you on our blog.

Check our blog [http://blog.athico.com/search/label/planner] and twitter (Geoffrey De Smet [http://

twitter.com/geoffreydesmet]) for news and articles. If Drools Planner helps you solve your problem,

don't forget to blog or tweet about it!

http://blog.athico.com/search/label/planner
http://blog.athico.com/search/label/planner
http://twitter.com/geoffreydesmet
http://twitter.com/geoffreydesmet
http://twitter.com/geoffreydesmet

Chapter 2.

7

Chapter 2. Use cases and examples

2.1. Introduction

Drools Planner has several examples. In this manual we explain Drools Planner mainly using the

n queens example. So it's advisable to read at least the section about that example. For advanced

users, the following examples are recommended: curriculum course and nurse rostering.

You can find the source code of all these examples in the distribution zip under examples/sources

and also in git under drools-planner/drools-planner-examples.

2.2. N queens example

2.2.1. Problem statement

The n queens puzzle is a puzzle with the following constraints:

• Use a chessboard of n columns and n rows.

• Place n queens on the chessboard.

• No 2 queens can attack each other. Note that a queen can attack any other queen on the same

horizontal, vertical or diagonal line.

The most common n queens puzzle is the 8 queens puzzle, with n = 8. We 'll explain Drools

Planner using the 4 queens puzzle as the primary example.

A proposed solution could be:

Figure 2.1. A wrong solution for the 4 queens puzzle

The above solution is wrong because queens A1 and B0 can attack each other (as can queens B0

and D0). Removing queen B0 would respect the "no 2 queens can attack each other" constraint,

but would break the "place n queens" constraint.

Chapter 2. Use cases and examples

8

2.2.2. Solution(s)

Below is a correct solution:

Figure 2.2. A correct solution for the 4 queens puzzle

All the constraints have been met, so the solution is correct. Note that most n queens puzzles

have multiple correct solutions. We 'll focus on finding a single correct solution for a given n, not

on finding the number of possible correct solutions for a given n.

2.2.3. Screenshot

Here is a screenshot of the example:

Problem size

9

Figure 2.3. Screenshot of the n queens example

2.2.4. Problem size

These numbers might give you some insight on the size of this problem.

Table 2.1. NQueens problem size

queens (n) # possible

solutions (each

queen its own

column)

feasible

solutions (=

optimal in this

use case)

optimal

solutions

optimal out of

possible

4 256 2 2 1 out of 128

8 16777216 64 64 1 out of 262144

16 1844674407370955161614772512 14772512 1 out of

1248720872503

Chapter 2. Use cases and examples

10

queens (n) # possible

solutions (each

queen its own

column)

feasible

solutions (=

optimal in this

use case)

optimal

solutions

optimal out of

possible

32 1.46150163733090291820368483e

+48

? ? ?

64 3.94020061963944792122790401e

+115

? ? ?

n n ^ n ? # feasible

solutions

?

The Drools Planner implementation has not been optimized because it functions as a beginner

example. Nevertheless, it can easily handle 64 queens.

2.2.5. Domain model

Use a good domain model: it will be easier to understand and solve your planning problem with

Drools Planner. This is the domain model for the n queens example:

public class Column {

 private int index;

 // ... getters and setters

}

public class Row {

 private int index;

 // ... getters and setters

}

public class Queen {

 private Column column;

 private Row row;

 public int getAscendingDiagonalIndex() {...}

 public int getDescendingDiagonalIndex() {...}

 // ... getters and setters

Domain model

11

}

public class NQueens implements Solution<SimpleScore> {

 private int n;

 private List<Column> columnList;

 private List<Row> rowList;

 private List<Queen> queenList;

 private SimpleScore score;

 // ... getters and setters

}

A Queen instance has a Column (for example: 0 is column A, 1 is column B, ...) and a Row (its row,

for example: 0 is row 0, 1 is row 1, ...). Based on the column and the row, the ascending diagonal

line as well as the descending diagonal line can be calculated. The column and row indexes start

from the upper left corner of the chessboard.

Table 2.2. A solution for the 4 queens puzzle shown in the domain model

A solution Queen columnIndex rowIndex ascendingDiagonalIndex

(columnIndex

+ rowIndex)

descendingDiagonalIndex

(columnIndex

- rowIndex)

A1 0 1 1 (**) -1

B0 1 0 (*) 1 (**) 1

C2 2 2 4 0

D0 3 0 (*) 3 3

When 2 queens share the same column, row or diagonal line, such as (*) and (**), they can attack

each other.

A single NQueens instance contains a list of all Queen instances. It is the Solution implementation

which will be supplied to, solved by and retrieved from the Solver. Notice that in the 4 queens

example, NQueens's getN() method will always return 4.

Chapter 2. Use cases and examples

12

2.3. Cloud balancing example

2.3.1. Problem statement

Assign each process to a server.

Hard constraints:

• Every server should be able to handle the sum of each of the minimal hardware requirements

(CPR, RAM, network bandwidth) of all its processes.

Soft constraints:

• Each server that has one or more processes assigned, has a fixed maintenance cost. Minimize

the total cost.

This is a form of bin packing.

Problem statement

13

Chapter 2. Use cases and examples

14

2.3.2. Domain model

2.4. Machine reassignment example (ROADEF 2012)

2.4.1. Problem statement

Assign each process to a machine. All processes already have an original (unoptimized)

assignment. Each process requires an amount of each resource (such as CPU, RAM, ...). This is

more complex version of the Cloud balancing example.

The problem is defined by the Google ROADEF/EURO Challenge 2012 [http://

challenge.roadef.org/2012/en/].

http://challenge.roadef.org/2012/en/
http://challenge.roadef.org/2012/en/
http://challenge.roadef.org/2012/en/

Problem size

15

Hard constraints:

• Maximum capacity: The maximum capacity for each resource for each machine must not be

exceeded.

• Conflict: Processes of the same service must run on distinct machines.

• Spread: Processes of the same service must be spread across locations.

• Dependency: The processes of a service depending on another service must run in the

neighborhood of a process of the other service.

• Transient usage: Some resources are transient and count towards the maximum capacity of

both the original machine as the newly assigned machine.

Soft constraints:

• Load: The safety capacity for each resource for each machine should not be exceeded.

• Balance: Leave room for future assignments by balancing the available resources on each

machine.

• Process move cost: A process has a move cost.

• Service move cost: A service has a move cost.

• Machine move cost: Moving a process from machine A to machine B has another A-B specific

move cost.

2.4.2. Problem size

model_a1_1: 2 resources, 1 neighborhoods, 4 locations, 4 machines, 79 services,

 100 processes and 1 balancePenalties with flooredPossibleSolutionSize (10^60).

model_a1_2: 4 resources, 2 neighborhoods, 4 locations, 100 machines, 980

 services, 1000 processes and 0 balancePenalties with flooredPossibleSolutionSize

 (10^2000).

model_a1_3: 3 resources, 5 neighborhoods, 25 locations, 100 machines, 216

 services, 1000 processes and 0 balancePenalties with flooredPossibleSolutionSize

 (10^2000).

model_a1_4: 3 resources, 50 neighborhoods, 50 locations, 50 machines, 142

 services, 1000 processes and 1 balancePenalties with flooredPossibleSolutionSize

 (10^1698).

model_a1_5: 4 resources, 2 neighborhoods, 4 locations, 12 machines, 981

 services, 1000 processes and 1 balancePenalties with flooredPossibleSolutionSize

 (10^1079).

model_a2_1: 3 resources, 1 neighborhoods, 1 locations, 100 machines, 1000

 services, 1000 processes and 0 balancePenalties with flooredPossibleSolutionSize

 (10^2000).

model_a2_2: 12 resources, 5 neighborhoods, 25 locations, 100 machines, 170

 services, 1000 processes and 0 balancePenalties with flooredPossibleSolutionSize

 (10^2000).

Chapter 2. Use cases and examples

16

model_a2_3: 12 resources, 5 neighborhoods, 25 locations, 100 machines, 129

 services, 1000 processes and 0 balancePenalties with flooredPossibleSolutionSize

 (10^2000).

model_a2_4: 12 resources, 5 neighborhoods, 25 locations, 50 machines, 180

 services, 1000 processes and 1 balancePenalties with flooredPossibleSolutionSize

 (10^1698).

model_a2_5: 12 resources, 5 neighborhoods, 25 locations, 50 machines, 153

 services, 1000 processes and 0 balancePenalties with flooredPossibleSolutionSize

 (10^1698).

2.5. Manners 2009 example

2.5.1. Problem statement

In Manners 2009, miss Manners is throwing a party again.

• This time she invited 144 guests and prepared 12 round tables with 12 seats each.

• Every guest should sit next to someone (left and right) of the opposite gender.

• And that neighbour should have at least one hobby in common with the guest.

• Also, this time there should be 2 politicians, 2 doctors, 2 socialites, 2 sports stars, 2 teachers

and 2 programmers at each table.

• And the 2 politicians, 2 doctors, 2 sports stars and 2 programmers shouldn't be the same kind.

Drools Expert also has the normal miss Manners examples (which is much smaller) and employs

a brute force heuristic to solve it. Drools Planner's implementation employs far more scalable

heuristics while still using Drools Expert to calculate the score..

2.6. Traveling Salesman Problem example (TSP)

2.6.1. Problem statement

Given a list of cities, find the shortest tour for a salesman that visits each city exactly once.

See the wikipedia definition of the traveling Salesman Problem. [http://en.wikipedia.org/wiki/

Travelling_salesman_problem]

It is one of the most intensively studied problems [http://www.tsp.gatech.edu/] in computational

mathematics. Yet, in the real world, it's often only part of a planning problem, along with other

constraints, such as employee shift time constraints.

2.7. Traveling Tournament Problem example (TTP)

2.7.1. Problem statement

Schedule matches between n teams with the following hard constraints:

http://en.wikipedia.org/wiki/Travelling_salesman_problem
http://en.wikipedia.org/wiki/Travelling_salesman_problem
http://en.wikipedia.org/wiki/Travelling_salesman_problem
http://www.tsp.gatech.edu/
http://www.tsp.gatech.edu/

Problem statement

17

• Each team plays twice against every other team: once home and once away.

• Each team has exactly 1 match on each timeslot.

• No team must have more than 3 consecutive home or 3 consecutive away matches.

• No repeaters: no 2 consecutive matches of the same 2 opposing teams.

and the following soft constraint:

• Minimize the total distance traveled by all teams.

The problem is defined on Michael Trick's website (which contains several world records too)

[http://mat.gsia.cmu.edu/TOURN/].

http://mat.gsia.cmu.edu/TOURN/
http://mat.gsia.cmu.edu/TOURN/

Chapter 2. Use cases and examples

18

2.7.2. Simple and smart implementation

There are 2 implementations (simple and smart) to demonstrate the importance of some

performance tips. The DroolsPlannerExamplesApp always runs the smart implementation, but

with these commands you can compare the 2 implementations yourself:

$ mvn exec:exec -

Dexec.mainClass="org.drools.planner.examples.travelingtournament.app.simple.SimpleTravelingTournamentApp"

...

$ mvn exec:exec -

Dexec.mainClass="org.drools.planner.examples.travelingtournament.app.smart.SmartTravelingTournamentApp"

...

The smart implementation performs and scales exponentially better than the simple

implementation.

2.7.3. Problem size

These numbers might give you some insight on the size of this problem.

Table 2.3. Traveling tournament problem size

teams # days # matches # possible

solutions

(simple)

possible

solutions

(smart)

feasible

solutions

optimal

solutions

4 6 12 2176782336 <= 518400 ? 1?

6 10 30 1000000000000000000000000000000<=

47784725839872000000

? 1?

8 14 56 1.52464943788290465606136043e

+64

<=

5.77608277425558771434498864e

+43

? 1?

10 18 90 9.43029892325559280477052413e

+112

<=

1.07573451027871200629339068e

+79

? 1?

12 22 132 1.58414112478195320415135060e

+177

<=

2.01650616733413376416949843e

+126

? 1?

14 26 182 3.35080635695103223315189511e

+257

<=

1.73513467024013808570420241e

+186

? 1?

16 30 240 3.22924601799855400751522483e

+354

<=

2.45064610271441678267620602e

+259

? 1?

Curriculum course scheduling example (ITC 2007 track 3)

19

teams # days # matches # possible

solutions

(simple)

possible

solutions

(smart)

feasible

solutions

optimal

solutions

n 2 * (n - 1) n * (n - 1) (2 * (n - 1)) ̂

(n * (n - 1))

<= (((2 * (n

- 1))!) ^ (n /

2))

? 1?

2.8. Curriculum course scheduling example (ITC 2007

track 3)

2.8.1. Problem statement

Schedule each lecture into a timeslot and into a room.

The problem is defined by the International Timetabling Competition 2007 track 3 [http://

www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm].

2.9. Examination timetabling example (ITC 2007 track 1)

2.9.1. Problem statement

Schedule each exam into a period and into a room. Multiple exams can share the same room

during the same period.

There are a number of hard constraints that cannot be broken:

• Exam conflict: 2 exams that share students should not occur in the same period.

• Room capacity: A room's seating capacity should suffice at all times.

• Period duration: A period's duration should suffice for all of its exams.

• Period related hard constraints should be fulfilled:

• Coincidence: 2 exams should use the same period (but possibly another room).

• Exclusion: 2 exams should not use the same period.

• After: 1 exam should occur in a period after another exam's period.

• Room related hard constraints should be fulfilled:

• Exclusive: 1 exam should not have to share its room with any other exam.

There are also a number of soft constraints that should be minimized (each of which has

parameterized penalty's):

• 2 exams in a row.

• 2 exams in a day.

http://www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm
http://www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm
http://www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm

Chapter 2. Use cases and examples

20

• Period spread: 2 exams that share students should be a number of periods apart.

• Mixed durations: 2 exams that share a room should not have different durations.

• Front load: Large exams should be scheduled earlier in the schedule.

• Period penalty: Some periods have a penalty when used.

• Room penalty: Some rooms have a penalty when used.

It uses large test data sets of real-life universities.

The problem is defined by the International Timetabling Competition 2007 track 1 [http://

www.cs.qub.ac.uk/itc2007/examtrack/exam_track_index.htm].

http://www.cs.qub.ac.uk/itc2007/examtrack/exam_track_index.htm
http://www.cs.qub.ac.uk/itc2007/examtrack/exam_track_index.htm
http://www.cs.qub.ac.uk/itc2007/examtrack/exam_track_index.htm

Problem size

21

2.9.2. Problem size

These numbers might give you some insight on the size of this problem.

Table 2.4. Examination problem size

Set #

students

exams/

topics

periods # rooms

possible

solutions

feasible

solutions

optimal

solutions

exam_comp_set17883 607 54 7 10^1564 ? 1?

exam_comp_set212484 870 40 49 10^2864 ? 1?

exam_comp_set316365 934 36 48 10^3023 ? 1?

exam_comp_set44421 273 21 1 10^360 ? 1?

exam_comp_set58719 1018 42 3 10^2138 ? 1?

exam_comp_set67909 242 16 8 10^509 ? 1?

exam_comp_set713795 1096 80 28 10^3671 ? 1?

exam_comp_set87718 598 80 8 10^1678 ? 1?

? s t p r (p * r) ^ e ? 1?

Geoffrey De Smet (the Drools Planner lead) finished 4th in the International Timetabling

Competition 2007's examination track with a very early version of Drools Planner. Many

improvements have been made since then.

2.9.3. Domain model

Below you can see the main examination domain classes:

Chapter 2. Use cases and examples

22

Figure 2.4. Examination domain class diagram

Patient admission scheduling (hospital bed planning) example (PAS)

23

Notice that we've split up the exam concept into an Exam class and a Topic class. The Exam

instances change during solving (this is the planning entity class), when they get another period

or room property. The Topic, Period and Room instances never change during solving (these are

problem facts, just like some other classes).

2.10. Patient admission scheduling (hospital bed

planning) example (PAS)

2.10.1. Problem statement

Assign each patient (that will come to the hospital) into a bed for each night that the patient will

stay in the hospital. Each bed belongs to a room and each room belongs to a department. The

arrival and departure dates of the patients is fixed: only a bed needs to be assigned for each night.

There are a couple of hard constraints:

• 2 patients shouldn't be assigned to the same bed in the same night.

• A room can have a gender limitation: only females, only males, the same gender in the same

night or no gender limitation at all.

• A department can have a minimum or maximum age.

• A patient can require a room with specific equipment(s).

And of course, there are also some soft constraints:

• A patient can prefer a maximum room size, for example if he/she want a single room.

• A patient is best assigned to a department that specializes in his/her problem.

• A patient is best assigned to a room that specializes in his/her problem.

• A patient can prefer a room with specific equipment(s).

The problem is defined on this webpage [http://allserv.kahosl.be/~peter/pas/] and the test data

comes from real world hospitals.

http://allserv.kahosl.be/~peter/pas/
http://allserv.kahosl.be/~peter/pas/

Chapter 2. Use cases and examples

24

2.11. Nurse rostering example (INRC 2010)

2.11.1. Problem statement

For each shift, assign a nurse to work that shift.

The problem is defined by the International Nurse Rostering Competition 2010 [http://

www.kuleuven-kortrijk.be/nrpcompetition].

http://www.kuleuven-kortrijk.be/nrpcompetition
http://www.kuleuven-kortrijk.be/nrpcompetition
http://www.kuleuven-kortrijk.be/nrpcompetition

Problem statement

25

Chapter 2. Use cases and examples

26

Problem statement

27

28

Chapter 3.

29

Chapter 3. Planner configuration

3.1. Overview

Solving a planning problem with Drools Planner consists out of 5 steps:

1. Model your planning problem as a class that implements the interface Solution, for example

the class NQueens.

2. Configure a Solver, for example a first fit and tabu search solver for any NQueens instance.

3. Load a problem data set from your data layer, for example a 4 Queens instance. Set it as the

planning problem on the Solver with Solver.setPlanningProblem(...).

4. Solve it with Solver.solve().

5. Get the best solution found by the Solver with Solver.getBestSolution().

3.2. Solver configuration

3.2.1. Solver configuration by XML file

You can build a Solver instance with the XmlSolverConfigurer. Configure it with a solver

configuration XML file:

 XmlSolverConfigurer configurer = new XmlSolverConfigurer();

 configurer.configure("/org/drools/planner/examples/nqueens/solver/

nqueensSolverConfig.xml");

 Solver solver = configurer.buildSolver();

A solver configuration file looks something like this:

<?xml version="1.0" encoding="UTF-8"?>

<solver>

 <!-- Define the model -->

 <solutionClass>org.drools.planner.examples.nqueens.domain.NQueens</

solutionClass>

 <planningEntityClass>org.drools.planner.examples.nqueens.domain.Queen</

planningEntityClass>

 <!-- Define the score function -->

 <scoreDrl>/org/drools/planner/examples/nqueens/solver/nQueensScoreRules.drl</

scoreDrl>

Chapter 3. Planner configuration

30

 <scoreDefinition>

 <scoreDefinitionType>SIMPLE</scoreDefinitionType>

 </scoreDefinition>

 <!-- Configure the optimization algorithm(s) -->

 <termination>

 ...

 </termination>

 <constructionHeuristic>

 ...

 </constructionHeuristic>

 <localSearch>

 ...

 </localSearch>

</solver>

Notice the 3 parts in it:

• Define the model

• Define the score function

• Configure the optimization algorithm(s)

We 'll explain these various parts of a configuration later in this manual.

Drools Planner makes it relatively easy to switch optimization algorithm(s) just by changing

the configuration. There's even a Benchmark utility which allows you to play out different

configurations against each other and report the most appropriate configuration for your problem.

You could for example play out tabu search versus simulated annealing, on 4 queens and 64

queens.

3.2.2. Solver configuration by Java API

As an alternative to the XML file, a solver configuration can also be configured with the

SolverConfig API:

 SolverConfig solverConfig = new SolverConfig();

 solverConfig.setSolutionClass(NQueens.class);

 Set<Class<?>> planningEntityClassSet = new HashSet<Class<?>>();

 planningEntityClassSet.add(Queen.class);

 solverConfig.setPlanningEntityClassSet(planningEntityClassSet);

 solverConfig.setScoreDrlList(

 Arrays.asList("/org/drools/planner/examples/nqueens/solver/

nQueensScoreRules.drl"));

Model your planning problem

31

 ScoreDefinitionConfig scoreDefinitionConfig =

 solverConfig.getScoreDefinitionConfig();

 scoreDefinitionConfig.setScoreDefinitionType(

 ScoreDefinitionConfig.ScoreDefinitionType.SIMPLE);

 TerminationConfig terminationConfig = solverConfig.getTerminationConfig();

 // ...

 List<SolverPhaseConfig> solverPhaseConfigList = new

 ArrayList<SolverPhaseConfig>();

 ConstructionHeuristicSolverPhaseConfig

 constructionHeuristicSolverPhaseConfig

 = new ConstructionHeuristicSolverPhaseConfig();

 // ...

 solverPhaseConfigList.add(constructionHeuristicSolverPhaseConfig);

 LocalSearchSolverPhaseConfig localSearchSolverPhaseConfig = new

 LocalSearchSolverPhaseConfig();

 // ...

 solverPhaseConfigList.add(localSearchSolverPhaseConfig);

 solverConfig.setSolverPhaseConfigList(solverPhaseConfigList);

 Solver solver = solverConfig.buildSolver();

It is highly recommended to configure by XML file instead of this API. To dynamically

configure a value at runtime, use the XML file as a template and extract the SolverConfig class

with getSolverConfig() to configure the dynamic value at runtime:

 XmlSolverConfigurer configurer = new XmlSolverConfigurer();

 configurer.configure("/org/drools/planner/examples/nqueens/solver/

nqueensSolverConfig.xml");

 SolverConfig solverConfig = configurer.getSolverConfig();

 solverConfig.getTerminationConfig().setMaximumMinutesSpend(userInput);

 Solver solver = solverConfig.buildSolver();

3.3. Model your planning problem

3.3.1. Is this class a problem fact or planning entity?

Look at a dataset of your planning problem. You 'll recognize domain classes in there, each of

which is one of these:

• A unrelated class: not used by any of the score constraints. From a planning standpoint, this

data is obsolete.

• A problem fact class: used by the score constraints, but does NOT change during planning

(as long as the problem stays the same). For example: Bed, Room, Shift, Employee, Topic,

Period, ...

Chapter 3. Planner configuration

32

• A planning entity class: used by the score constraints and changes during planning. For

example: BedDesignation, ShiftAssignment, Exam, ...

Ask yourself: What class changes during planning? Which class has variables that I want the

Solver to choose for me? That class is a planning entity. Most use cases have only 1 planning

entity class.

Note

In real-time planning, problem facts can change during planning, because the

problem itself changes. However, that doesn't make them planning entities.

In Drools Planner all problems facts and planning entities are plain old JavaBeans

(POJO's). You can load them from a database (JDBC/JPA/JDO), an XML file, a data repository,

a noSQL cloud, ...: Drools Planner doesn't care.

3.3.2. Problem fact

A problem fact is any JavaBean (POJO) with getters that does not change during planning.

Implementing the interface Serializable is recommended (but not required). For example in n

queens, the columns and rows are problem facts:

public class Column implements Serializable {

 private int index;

 // ... getters

}

public class Row implements Serializable {

 private int index;

 // ... getters

}

A problem fact can reference other problem facts of course:

public class Course implements Serializable {

 private String code;

 private Teacher teacher; // Other problem fact

Planning entity and planning variables

33

 private int lectureSize;

 private int minWorkingDaySize;

 private List<Curriculum> curriculumList; // Other problem facts

 private int studentSize;

 // ... getters

}

A problem fact class does not require any Planner specific code. For example, you can reuse your

domain classes, which might have JPA annotations.

Note

Generally, better designed domain classes lead to simpler and more efficient score

constraints. Therefore, when dealing with a messy legacy system, it can sometimes

be worth it to convert the messy domain set into a planner specific POJO set first.

For example: if your domain model has 2 Teacher instances for the same teacher

that teaches at 2 different departments, it's hard to write a correct score constraint

that constrains a teacher's spare time.

Alternatively, you can sometimes also introduce a cached problem fact to enrich

the domain model for planning only.

3.3.3. Planning entity and planning variables

3.3.3.1. Planning entity

A planning entity is a JavaBean (POJO) that changes during solving, for example a Queen that

changes to another row. A planning problem has multiple planning entities, for example for a single

n queens problem, each Queen is a planning entity. But there's usually only 1 planning entity class,

for example the Queen class.

A planning entity class needs to be annotated with the @PlanningEntity annotation.

Each planning entity class has 1 or more planning variables. It usually also has 1 or more defining

properties. For example in n queens, a Queen is defined by it's Column and has a planning variable

Row. This means that a Queen's column never changes during solving, while it's row does change.

@PlanningEntity

public class Queen {

 private Column column;

 // Planning variables: changes during planning, between score calculations.

Chapter 3. Planner configuration

34

 private Row row;

 // ... getters and setters

}

A planning entity class can have multiple planning variables. For example, a Lecture is defined

by it's Course and it's index in that course (because 1 course has multiple lectures). Each Lecture

needs to be scheduled into a Period and a Room so it has 2 planning variables (period and room).

For example: the course Mathematics has 8 lectures per week, of which the first lecture is Monday

morning at 08:00 in room 212.

@PlanningEntity

public class Lecture {

 private Course course;

 private int lectureIndexInCourse;

 // Planning variables: changes during planning, between score calculations.

 private Period period;

 private Room room;

 // ...

}

The solver configuration also needs to be made aware of each planning entity class:

<solver>

 ...

 <planningEntityClass>org.drools.planner.examples.nqueens.domain.Queen</

planningEntityClass>

 ...

</solver>

Some uses cases have multiple planning entity classes. For example: route freight and trains

into railway network arcs, where each freight can use multiple trains over it's journey and each

train can carry multiple freights per arc. Having multiple planning entity classes directly raises the

implementation complexity of your use case.

Note

Do not create unnecessary planning entity classes. This leads to difficult Move

implementations and slower score calculation.

Planning entity and planning variables

35

For example, do not create a planning entity class to hold the total free time of

a teacher, which needs to be kept up to date as the Lecture planning entities

change. Instead, calculate the free time in the score constraints and put the result

per teacher into a logically inserted score object.

If historic data needs to be considered too, then create problem fact to hold the

historic data up to, but not including, the planning window (so it doesn't change

when a planning entity changes) and let the score constraints take it into account.

3.3.3.2. Planning entity difficulty

Some optimization algorithms work more efficiently if they have an estimation of which planning

entities are more difficult to plan. For example: in bin packing bigger items are harder to fit, in

course scheduling lectures with more students are more difficult to schedule and in n queens the

middle queens are more difficult.

Therefore, you can set a difficultyComparatorClass to the @PlanningEntity annotation:

@PlanningEntity(difficultyComparatorClass =

 CloudProcessAssignmentDifficultyComparator.class)

public class CloudProcessAssignment {

 // ...

}

public class CloudProcessAssignmentDifficultyComparator implements

 Comparator<CloudProcessAssignment> {

 public int compare(CloudProcessAssignment a, CloudProcessAssignment b) {

 return new CompareToBuilder()

 .append(a.getCloudProcess().getRequiredMultiplicand(),

 b.getCloudProcess().getRequiredMultiplicand())

 .append(a.getCloudProcess().getId(), b.getCloudProcess().getId())

 .toComparison();

 }

}

Note

If you have multiple planning entity classes, the difficultyComparatorClass

needs to implement a Comparator of a common superclass (for example

Chapter 3. Planner configuration

36

Comparator<Object>) and be able to handle comparing instances of those

different classes.

Alternatively, you can also set a difficultyWeightFactoryClass to the @PlanningEntity

annotation, so you have access to the rest of the problem facts from the solution too:

@PlanningEntity(difficultyWeightFactoryClass =

 QueenDifficultyWeightFactory.class)

public class Queen {

 // ...

}

public interface PlanningEntityDifficultyWeightFactory {

 Comparable createDifficultyWeight(Solution solution, Object planningEntity);

}

public class QueenDifficultyWeightFactory implements

 PlanningEntityDifficultyWeightFactory {

 public Comparable createDifficultyWeight(Solution solution, Object

 planningEntity) {

 NQueens nQueens = (NQueens) solution;

 Queen queen = (Queen) planningEntity;

 int distanceFromMiddle = calculateDistanceFromMiddle(nQueens.getN(),

 queen.getColumnIndex());

 return new QueenDifficultyWeight(queen, distanceFromMiddle);

 }

 // ...

 public static class QueenDifficultyWeight implements

 Comparable<QueenDifficultyWeight> {

 private final Queen queen;

 private final int distanceFromMiddle;

 public QueenDifficultyWeight(Queen queen, int distanceFromMiddle) {

 this.queen = queen;

 this.distanceFromMiddle = distanceFromMiddle;

 }

 public int compareTo(QueenDifficultyWeight other) {

Planning entity and planning variables

37

 return new CompareToBuilder()

 // The more difficult queens have a lower distance to the middle

 .append(other.distanceFromMiddle, distanceFromMiddle) //

 Decreasing

 .append(queen.getColumnIndex(), other.queen.getColumnIndex())

 .toComparison();

 }

 }

}

None of the current planning variable state may be used to compare planning entities. They are

likely to be null anyway. For example, a Queen's row variable may not be used.

3.3.3.3. Planning variable

A planning variable is a property (including getter and setter) on a planning entity. It changes

during planning. For example, a Queen's row property is a planning variable. Note that even though

a Queen's row property changes to another Row during planning, no Row instance itself is changed.

A planning variable points to a planning value.

A planning variable getter needs to be annotated with the @PlanningVariable annotation.

Furthermore, it needs a @ValueRange* annotation too.

@PlanningEntity

public class Queen {

 private Row row;

 // ...

 @PlanningVariable

 @ValueRangeFromSolutionProperty(propertyName = "rowList")

 public Row getRow() {

 return row;

 }

 public void setRow(Row row) {

 this.row = row;

 }

}

Chapter 3. Planner configuration

38

3.3.3.4. When is a planning entity initialized?

A planning entity is considered initialized if all it's planning variables are initialized.

By default, a planning variable is considered initialized if it's value is not null.

3.3.4. Planning value and planning value ranges

3.3.4.1. Planning value

A planning value is a possible value for a planning variable. Usually, a planning value is problem

fact, but it can also be any object, for example a double. Sometimes it can even be another

planning entity.

A planning value range is the set of possible planning values for a planning variable. This set can

be a discrete (for example row 1, 2, 3 or 4) or continuous (for example any double between 0.0

and 1.0). There are several ways to define the value range of a planning variable, each with it's

own @ValueRange* annotation.

If null is a valid planning value, it should be included in the value range and the default way to

detect uninitialized planning variables must be changed.

3.3.4.2. Planning value range

3.3.4.2.1. ValueRangeFromSolutionProperty

All instances of the same planning entity class share the same set of possible planning values for

that planning variable. This is the most common way to configure a value range.

The Solution implementation has property which returns a Collection. Any value from that

Collection is a possible planning value for this planning variable.

 @PlanningVariable

 @ValueRangeFromSolutionProperty(propertyName = "rowList")

 public Row getRow() {

 return row;

 }

public class NQueens implements Solution<SimpleScore> {

 // ...

 public List<Row> getRowList() {

 return rowList;

 }

Planning value and planning value ranges

39

}

3.3.4.2.2. ValueRangeFromPlanningEntityProperty

Each planning entity has it's own set of possible planning values for a planning variable. For

example, if a teacher can never teach in a room that does not belong to his department, lectures

of that teacher can limit their room value range to the rooms of his department.

 @PlanningVariable

 @ValueRangeFromPlanningEntityProperty(propertyName = "possibleRoomList")

 public Room getRoom() {

 return room;

 }

 public List<Room> getPossibleRoomList() {

 return getCourse().getTeacher().getPossibleRoomList();

 }

Never use this to enforce a soft constraint (or even a hard constraint when the problem might not

have a feasible solution). For example, when a teacher can not teach in a room that does not

belong to his department unless there is no other way, the teacher should not be limited in his

room value range.

Note

By limiting the value range specifically of 1 planning entity, you are effectively

making a build-in hard constraint. This can be a very good thing, as the number of

possible solutions is severely lowered. But this can also be a bad thing because it

takes away the freedom of the optimization algorithms to temporarily break such

a hard constraint.

A planning entity should not use other planning entities to determinate it's value range. It would

only try to solve the planning problem itself and interfere with the optimization algorithms.

3.3.4.2.3. ValueRangeUndefined

Leaves the value range undefined. Some optimization algorithms do not support this value range.

 @PlanningVariable

 @ValueRangeUndefined

 public Row getRow() {

 return row;

 }

Chapter 3. Planner configuration

40

3.3.4.3. Planning value strength

Some optimization algorithms work more efficiently if they have an estimation of which planning

values are stronger, which means they are more likely to satisfy a planning entity. For example: in

bin packing bigger containers are more likely to fit an item and in course scheduling bigger rooms

are less likely to break the student capacity constraint.

Therefore, you can set a strengthComparatorClass to the @PlanningVariable annotation:

 @PlanningVariable(strengthComparatorClass =

 CloudComputerStrengthComparator.class)

 // ...

 public CloudComputer getCloudComputer() {

 // ...

 }

public class CloudComputerStrengthComparator implements

 Comparator<CloudComputer> {

 public int compare(CloudComputer a, CloudComputer b) {

 return new CompareToBuilder()

 .append(a.getMultiplicand(), b.getMultiplicand())

 .append(b.getCost(), a.getCost()) // Descending (but this

 is debatable)

 .append(a.getId(), b.getId())

 .toComparison();

 }

}

Note

If you have multiple planning value classes in the same value range, the

strengthComparatorClass needs to implement a Comparator of a common

superclass (for example Comparator<Object>) and be able to handle comparing

instances of those different classes.

Alternatively, you can also set a strengthWeightFactoryClass to the @PlanningVariable

annotation, so you have access to the rest of the problem facts from the solution too:

 @PlanningVariable(strengthWeightFactoryClass =

 RowStrengthWeightFactory.class)

 // ...

Planning value and planning value ranges

41

 public Row getRow() {

 // ...

 }

public interface PlanningValueStrengthWeightFactory {

 Comparable createStrengthWeight(Solution solution, Object planningValue);

}

public class RowStrengthWeightFactory implements

 PlanningValueStrengthWeightFactory {

 public Comparable createStrengthWeight(Solution solution, Object

 planningValue) {

 NQueens nQueens = (NQueens) solution;

 Row row = (Row) planningValue;

 int distanceFromMiddle = calculateDistanceFromMiddle(nQueens.getN(),

 row.getIndex());

 return new RowStrengthWeight(row, distanceFromMiddle);

 }

 // ...

 public static class RowStrengthWeight implements

 Comparable<RowStrengthWeight> {

 private final Row row;

 private final int distanceFromMiddle;

 public RowStrengthWeight(Row row, int distanceFromMiddle) {

 this.row = row;

 this.distanceFromMiddle = distanceFromMiddle;

 }

 public int compareTo(RowStrengthWeight other) {

 return new CompareToBuilder()

 // The stronger rows have a lower distance to the middle

 .append(other.distanceFromMiddle, distanceFromMiddle) //

 Decreasing (but this is debatable)

 .append(row.getIndex(), other.row.getIndex())

 .toComparison();

 }

 }

Chapter 3. Planner configuration

42

}

None of the current planning variable state in any of the planning entities may be used to compare

planning values. They are likely to be null anyway. For example, None of the row variables of

any Queen may be used to determine the strength of a Row.

3.3.5. Planning problem and planning solution

3.3.5.1. Planning problem instance

A dataset for a planning problem needs to be wrapped in a class for the Solver to solve. You

must implement this class. For example in n queens, this in the NQueens class which contains a

Column list, a Row list and a Queen list.

A planning problem is actually a unsolved planning solution or - stated differently - an uninitialized

Solution. Therefor, that wrapping class must implement the Solution interface. For example in

n queens, that NQueens class implements Solution, yet every Queen in a fresh NQueens class

is assigned to a Row yet. So it's not a feasible solution. It's not even a possible solution. It's an

uninitialized solution.

3.3.5.2. The Solution interface

You need to present the problem as a Solution instance to the Solver. So you need to have a

class that implements the Solution interface:

public interface Solution<S extends Score> {

 S getScore();

 void setScore(S score);

 Collection<? extends Object> getProblemFacts();

 Solution<S> cloneSolution();

}

For example, an NQueens instance holds a list of all columns, all rows and all Queen instances:

public class NQueens implements Solution<SimpleScore> {

 private int n;

 // Problem facts

 private List<Column> columnList;

Planning problem and planning solution

43

 private List<Row> rowList;

 // Planning entities

 private List<Queen> queenList;

 // ...

}

3.3.5.3. The getScore and setScore methods

A Solution requires a score property. The score property is null if the Solution is uninitialized

or if the score has not yet been (re)calculated. The score property is usually typed to the specific

Score implementation you use. For example, NQueens uses a SimpleScore:

public class NQueens implements Solution<SimpleScore> {

 private SimpleScore score;

 public SimpleScore getScore() {

 return score;

 }

 public void setScore(SimpleScore score) {

 this.score = score;

 }

 // ...

}

Most use cases use a HardAndSoftScore instead:

public class CurriculumCourseSchedule implements Solution<HardAndSoftScore> {

 private HardAndSoftScore score;

 public HardAndSoftScore getScore() {

 return score;

 }

 public void setScore(HardAndSoftScore score) {

 this.score = score;

 }

 // ...

Chapter 3. Planner configuration

44

}

See the Score calculation section for more information on the Score implementations.

3.3.5.4. The getProblemFacts method

All objects returned by the getProblemFacts() method will be asserted into the drools working

memory, so the score rules can access them. For example, NQueens just returns all Column and

Row instances.

 public Collection<? extends Object> getProblemFacts() {

 List<Object> facts = new ArrayList<Object>();

 facts.addAll(columnList);

 facts.addAll(rowList);

 // Do not add the planning entity's (queenList) because that will be

 done automatically

 return facts;

 }

All planning entities are automatically inserted into the drools working memory. Do not add them

in the method getProblemFacts().

The method getProblemFacts() is not called much: at most only once per solver phase per

solver thread.

3.3.5.5. Cached problem fact

A cached problem fact is a problem fact that doesn't exist in the real domain model, but is

calculated before the Solver really starts solving. The method getProblemFacts() has the

chance to enrich the domain model with such cached problem facts, which can lead to simpler

and faster score constraints.

For example in examination, a cache problem fact TopicConflict is created for every 2 Topic's

which share at least 1 Student.

 public Collection<? extends Object> getProblemFacts() {

 List<Object> facts = new ArrayList<Object>();

 // ...

 facts.addAll(calculateTopicConflictList());

 // ...

 return facts;

 }

 private List<TopicConflict> calculateTopicConflictList() {

 List<TopicConflict> topicConflictList = new ArrayList<TopicConflict>();

 for (Topic leftTopic : topicList) {

Planning problem and planning solution

45

 for (Topic rightTopic : topicList) {

 if (leftTopic.getId() < rightTopic.getId()) {

 int studentSize = 0;

 for (Student student : leftTopic.getStudentList()) {

 if (rightTopic.getStudentList().contains(student)) {

 studentSize++;

 }

 }

 if (studentSize > 0) {

 topicConflictList.add(new TopicConflict(leftTopic,

 rightTopic, studentSize));

 }

 }

 }

 }

 return topicConflictList;

 }

Any score constraint that needs to check if no 2 exams have a topic which share a student are

being scheduled close together (depending on the constraint: at the same time, in a row or in the

same day), can simply use the TopicConflict instance as a problem fact, instead of having to

combine every 2 Student instances.

3.3.5.6. The cloneSolution method

Most optimization algorithms use the cloneSolution() method to clone the solution each time

they encounter a new best solution (so they can recall it later) or to work with multiple solutions

in parallel.

The NQueens implementation only deep clones all Queen instances. When the original solution is

changed during planning, by changing a Queen, the clone stays the same.

 /**

 * Clone will only deep copy the {@link #queenList}.

 */

 public NQueens cloneSolution() {

 NQueens clone = new NQueens();

 clone.id = id;

 clone.n = n;

 clone.columnList = columnList;

 clone.rowList = rowList;

 List<Queen> clonedQueenList = new ArrayList<Queen>(queenList.size());

 for (Queen queen : queenList) {

 clonedQueenList.add(queen.clone());

 }

 clone.queenList = clonedQueenList;

 clone.score = score;

Chapter 3. Planner configuration

46

 return clone;

 }

The cloneSolution() method should only deep clone the planning entities. Notice that the

problem facts, such as Column and Row are normally not cloned: even their List instances are

not cloned.

Note

If you were to clone the problem facts too, then you'd have to make sure that the

new planning entity clones also refer to the new problem facts clones used by the

solution. For example, if you 'd clone all Row instances, then each Queen clone and

the NQueens clone itself should refer to the same set of new Row clones.

3.3.5.7. Build an uninitialized solution

Build a Solution instance to represent your planning problem, so you can set it on the Solver

as the planning problem to solve. For example in n queens, an NQueens instance is created with

the required Column and Row instances and every Queen set to a different column and every row

set to null.

 private NQueens createNQueens(int n) {

 NQueens nQueens = new NQueens();

 nQueens.setId(0L);

 nQueens.setN(n);

 List<Column> columnList = new ArrayList<Column>(n);

 for (int i = 0; i < n; i++) {

 Column column = new Column();

 column.setId((long) i);

 column.setIndex(i);

 columnList.add(column);

 }

 nQueens.setColumnList(columnList);

 List<Row> rowList = new ArrayList<Row>(n);

 for (int i = 0; i < n; i++) {

 Row row = new Row();

 row.setId((long) i);

 row.setIndex(i);

 rowList.add(row);

 }

 nQueens.setRowList(rowList);

 List<Queen> queenList = new ArrayList<Queen>(n);

 long id = 0;

 for (Column column : columnList) {

 Queen queen = new Queen();

Planning problem and planning solution

47

 queen.setId(id);

 id++;

 queen.setColumn(column);

 // Notice that we leave the PlanningVariable properties (row) on null

 queenList.add(queen);

 }

 nQueens.setQueenList(queenList);

 return nQueens;

 }

Figure 3.1. Uninitialized solution for the 4 queens puzzle

Usually, most of this data comes from your data layer, and your Solution implementation just

aggregates that data and creates the uninitialized planning entity instances to plan:

 private void createLectureList(CurriculumCourseSchedule schedule) {

 List<Course> courseList = schedule.getCourseList();

 List<Lecture> lectureList = new ArrayList<Lecture>(courseList.size());

 for (Course course : courseList) {

 for (int i = 0; i < course.getLectureSize(); i++) {

 Lecture lecture = new Lecture();

 lecture.setCourse(course);

 lecture.setLectureIndexInCourse(i);

 // Notice that we leave the PlanningVariable properties

 (period and room) on null

 lectureList.add(lecture);

 }

 }

 schedule.setLectureList(lectureList);

 }

Chapter 3. Planner configuration

48

3.4. Solver

3.4.1. The Solver interface

The Solver implementation will solve your planning problem. It's build based from a solver

configuration, do not implement it yourself:

public interface Solver {

 void setPlanningProblem(Solution planningProblem);

 void solve();

 Solution getBestSolution();

 // ...

}

A Solver can only solve 1 problem instance at a time. A Solver should only be accessed from a

single thread, except for the methods that are specifically javadocced as being thread-safe.

3.4.2. Solving a problem

Solving a problem is quite easy once you have:

• A Solver build from a solver configuration

• A Solution that represents the planning problem instance

Just set the planning problem, solve it and extract the best solution:

 solver.setPlanningProblem(planningProblem);

 solver.solve();

 Solution bestSolution = solver.getBestSolution();

For example in n queens, the method getBestSolution() will return an NQueens instance with

every Queen assigned to a Row.

Environment mode: Are there bugs in my code?

49

Figure 3.2. Best solution for the 4 queens puzzle in 8 ms (also an optimal

solution)

The solve() method can take a long time (depending on the problem size and the solver

configuration). The Solver will remember (actually clone) the best solution it encounters during

its solving. Depending on a number factors (including problem size, how time the Solver has, the

solver configuration, ...), that best solution will be a feasible or even an optimal solution.

Note

The Solution instance given to the method setPlanningProblem() will be

changed by the Solver, but it do not mistake it for the best solution.

The Solution instance returned by the method getBestSolution() will most

likely be a clone of the instance given to the method setPlanningProblem(),

which means it's a different instance.

Note

The Solution instance given to the method setPlanningProblem() does not

need to be uninitialized. It can be partially or fully initialized, which is likely in

repeated planning.

3.4.3. Environment mode: Are there bugs in my code?

The environment mode allows you to detect common bugs in your implementation. It does not

affect the logging level.

You can set the environment mode in the solver configuration XML file:

<solver>

 <environmentMode>DEBUG</environmentMode>

 ...

Chapter 3. Planner configuration

50

</solver>

A solver has a single Random instance. Some solver configurations use the Random instance a lot

more than others. For example simulated annealing depends highly on random numbers, while

tabu search only depends on it to deal with score ties. The environment mode influences the seed

of that Random instance.

There are 4 environment modes:

3.4.3.1. TRACE

The trace mode is reproducible (see the reproducible mode) and also turns on all assertions (such

as assert that the delta based score is uncorrupted) to fail-fast on rule engine bugs.

The trace mode is very slow (because it doesn't rely on delta based score calculation).

3.4.3.2. DEBUG

The debug mode is reproducible (see the reproducible mode) and also turns on most assertions

(such as assert that the undo Move is uncorrupted) to fail-fast on a bug in your Move

implementation, your score rule, ...

The debug mode is slow.

It's recommended to write a test case which does a short run of your planning problem with debug

mode on.

3.4.3.3. REPRODUCIBLE (default)

The reproducible mode is the default mode because it is recommended during development. In

this mode, 2 runs on the same computer will execute the same code in the same order. They will

also yield the same result, except if they use a time based termination and they have a sufficiently

large difference in allocated CPU time. This allows you to benchmark new optimizations (such as

a score constraint change) fairly.

The reproducible mode is not much slower than the production mode.

In practice, this mode uses the default random seed, and it also disables certain concurrency

optimizations (such as work stealing).

3.4.3.4. PRODUCTION

The production mode is the fastest and the most robust, but not reproducible. It is recommended

for a production environment.

The random seed is different on every run, which makes it more robust against an unlucky random

seed. An unlucky random seed gives a bad result on a certain data set with a certain solver

configuration. Note that in most use cases the impact of the random seed is relatively low on

Logging level: What is the Solver doing?

51

the result (even with simulated annealing). An occasional bad result is far more likely caused by

another issue (such as a score trap).

3.4.4. Logging level: What is the Solver doing?

The best way to illuminate the black box that is a Solver, is to play with the logging level:

• WARN: Log only when things go wrong.

• INFO: Log every phase and the solver itself.

• DEBUG: Log every step of every phase.

• TRACE: Log every move of every step of every phase.

Set the logging level on the category org.drools.planner, for example with Log4J:

<log4j:configuration xmlns:log4j="http://jakarta.apache.org/log4j/">

 <category name="org.drools.planner">

 <priority value="debug" />

 </category>

 ...

</log4j:configuration>

Or with Logback:

<configuration>

 <logger name="org.drools.planner" level="debug"/>

 ...

<configuration>

For example, set it to DEBUG logging, to see when the phases end and how fast steps are taken:

INFO Solver started: time spend (0), score (null), new best score (null), random

 seed (0).

DEBUG Step index (0), time spend (1), score (0), initialized planning entity

 (col2@row0).

DEBUG Step index (1), time spend (3), score (0), initialized planning entity

 (col1@row2).

Chapter 3. Planner configuration

52

DEBUG Step index (2), time spend (4), score (0), initialized planning entity

 (col3@row3).

DEBUG Step index (3), time spend (5), score (-1), initialized planning

 entity (col0@row1).

INFO Phase construction heuristic finished: step total (4), time spend (6),

 best score (-1).

DEBUG Step index (0), time spend (10), score (-1), best score (-1),

 accepted move size (12) for picked step (col1@row2 => row3).

DEBUG Step index (1), time spend (12), score (0), new best score (0), accepted

 move size (12) for picked step (col3@row3 => row2).

INFO Phase local search finished: step total (2), time spend (13), best score (0).

INFO Solved: time spend (13), best score (0), average calculate count per

 second (4846).

All time spends are in milliseconds.

Chapter 4.

53

Chapter 4. Score calculation with a

rule engine

4.1. Rule based score calculation

The score calculation (or fitness function) of a planning problem is based on constraints (such

as hard constraints, soft constraints, rewards, ...). A rule engine, such as Drools Expert, makes it

easy to implement those constraints as score rules.

Adding more constraints is easy and scalable (once you understand the DRL syntax). This

allows you to add a bunch of soft constraint score rules on top of the hard constraints score rules

with little effort and at a reasonable performance cost. For example, for a freight routing problem

you could add a soft constraint to avoid the certain flagged highways during rush hour.

4.2. Choosing a Score implementation

4.2.1. The ScoreDefinition interface

The ScoreDefinition interface defines the score representation. The score must be a Score

instance and the instance type (for example DefaultHardAndSoftScore) must be stable

throughout the solver runtime.

The solver aims to find the solution with the highest score. The best solution is the solution with

the highest score that it has encountered during its solving.

Note

Most planning problems use negative scores, because they use negative

constraints. The score is usually the sum of the weight of the negative constraints

being broken, with an impossible perfect score of 0. This explains why the score

of a solution of 4 queens is the negative of the number of queen couples which

can attack each other.

Configure a ScoreDefinition in the solver configuration. You can implement a custom

ScoreDefinition, although the build-in score definitions should suffice for most needs:

4.2.2. SimpleScore

The SimpleScoreDefinition defines the Score as a SimpleScore which has a single int value,

for example -123.

 <scoreDefinition>

Chapter 4. Score calculation ...

54

 <scoreDefinitionType>SIMPLE</scoreDefinitionType>

 </scoreDefinition>

4.2.3. HardAndSoftScore

The HardAndSoftScoreDefinition defines the Score as a HardAndSoftScore which has a hard

int value and a soft int value, for example -123hard/-456soft.

 <scoreDefinition>

 <scoreDefinitionType>HARD_AND_SOFT</scoreDefinitionType>

 </scoreDefinition>

4.2.4. Implementing a custom Score

To implement a custom Score, you 'll also need to implement a custom ScoreDefinition.

Extend AbstractScoreDefinition (preferable by copy pasting HardAndSoftScoreDefinition

or SimpleScoreDefinition) and start from there.

Then hook you custom ScoreDefinition in your SolverConfig.xml:

 <scoreDefinition>

 <scoreDefinitionClass>org.drools.planner.examples.my.score.definition.MyScoreDefinition</

scoreDefinitionClass>

 </scoreDefinition>

4.3. Defining the score rules source

There are 2 ways to define where your score rules live.

4.3.1. A scoreDrl resource on the classpath

This is the simplest way: the score rule live in a DRL file which is a resource on the classpath.

Just add your score rules *.drl file in the solver configuration, for example:

 <scoreDrl>/org/drools/planner/examples/nqueens/solver/

nQueensScoreRules.drl</scoreDrl>

You can add multiple <scoreDrl> entries if needed, but normally you 'll define all your score rules

in 1 file.

A RuleBase (possibly defined by Guvnor)

55

4.3.2. A RuleBase (possibly defined by Guvnor)

If you prefer to build the RuleBase yourself or if you're combining Planner with Guvnor, you can

set the RuleBase on the XmlSolverConfigurer before building the Solver:

 xmlSolverConfigurer.getSolverConfig().setRuleBase(ruleBase);

4.4. Implementing a score rule

The score calculation of a planning problem is based on constraints (such as hard constraints,

soft constraints, rewards, ...). A rule engine, such as Drools, makes it easy to implement those

constraints as score rules.

Here's an example of a constraint implemented as a score rule in such a DRL file:

rule "multipleQueensHorizontal"

 when

 $q1 : Queen($id : id, $y : y);

 $q2 : Queen(id > $id, y == $y);

 then

 insertLogical(new

 UnweightedConstraintOccurrence("multipleQueensHorizontal", $q1, $q2));

end

This score rule will fire once for every 2 queens with the same y. The (id > $id) condition is

needed to assure that for 2 queens A and B, it can only fire for (A, B) and not for (B, A), (A, A) or

(B, B). Let's take a closer look at this score rule on this solution of 4 queens:

In this solution the multipleQueensHorizontal score rule will fire for 6 queen couples: (A, B), (A, C),

(A, D), (B, C), (B, D) and (C, D). Because none of the queens are on the same vertical or diagonal

line, this solution will have a score of -6. An optimal solution of 4 queens has a score of 0.

Chapter 4. Score calculation ...

56

Note

Notice that every score rule will relate to at least 1 planning entity class (directly or

indirectly though a logically inserted fact).

This is normal: it would be a waste of time to write a score rule that only relates to

problem facts, as the consequence will never change during planning, no matter

what the possible solution.

4.5. Aggregating the score rules into the Score

A ScoreCalculator instance is asserted into the WorkingMemory as a global called

scoreCalculator. Your score rules need to (direclty or indirectly) update that instance. Usually

you 'll make a single rule as an aggregation of the other rules to update the score:

global SimpleScoreCalculator scoreCalculator;

rule "multipleQueensHorizontal"

 when

 $q1 : Queen($id : id, $y : y);

 $q2 : Queen(id > $id, y == $y);

 then

 insertLogical(new

 UnweightedConstraintOccurrence("multipleQueensHorizontal", $q1, $q2));

end

// multipleQueensVertical is obsolete because it is always 0

rule "multipleQueensAscendingDiagonal"

 when

 $q1 : Queen($id : id, $ascendingD : ascendingD);

 $q2 : Queen(id > $id, ascendingD == $ascendingD);

 then

 insertLogical(new

 UnweightedConstraintOccurrence("multipleQueensAscendingDiagonal", $q1, $q2));

end

rule "multipleQueensDescendingDiagonal"

 when

 $q1 : Queen($id : id, $descendingD : descendingD);

 $q2 : Queen(id > $id, descendingD == $descendingD);

 then

 insertLogical(new

 UnweightedConstraintOccurrence("multipleQueensDescendingDiagonal", $q1, $q2));

end

Aggregating the score rules into the Score

57

rule "hardConstraintsBroken"

 when

 $occurrenceCount : Number() from accumulate(

 $unweightedConstraintOccurrence : UnweightedConstraintOccurrence(),

 count($unweightedConstraintOccurrence)

);

 then

 scoreCalculator.setScore(- $occurrenceCount.intValue());

end

Most use cases will also weigh their constraints differently, by multiplying the count of each score

rule with its weight. For example in freight routing, you can make 5 broken "avoid crossroads" soft

constraints count as much as 1 broken "avoid highways at rush hour" soft constraint. This allows

your business analysts to easily tweak the score function as they see fit.

Here's an example from CurriculumCourse, where assiging a Lecture to a Room which is missing

2 seats is weighted equally bad as having 1 isolated Lecture in a Curriculum:

// RoomCapacity: For each lecture, the number of students that attend the course

 must be less or equal

// than the number of seats of all the rooms that host its lectures.

// Each student above the capacity counts as 1 point of penalty.

rule "roomCapacity"

 when

 ...

 then

 insertLogical(new IntConstraintOccurrence("roomCapacity",

 ConstraintType.NEGATIVE_SOFT,

 ($studentSize - $capacity),

 ...));

end

// CurriculumCompactness: Lectures belonging to a curriculum should be adjacent

// to each other (i.e., in consecutive periods).

// For a given curriculum we account for a violation every time there is one

 lecture not adjacent

// to any other lecture within the same day.

// Each isolated lecture in a curriculum counts as 2 points of penalty.

rule "curriculumCompactness"

 when

 ...

 then

 insertLogical(new IntConstraintOccurrence("curriculumCompactness",

 ConstraintType.NEGATIVE_SOFT,

 2,

 ...));

end

Chapter 4. Score calculation ...

58

// Accumulate soft constraints

rule "softConstraintsBroken"

 salience -1 // Do the other rules first (optional, for performance)

 when

 $softTotal : Number() from accumulate(

 IntConstraintOccurrence(constraintType == ConstraintType.NEGATIVE_SOFT,

 $weight : weight),

 sum($weight)

)

 then

 scoreCalculator.setSoftConstraintsBroken($softTotal.intValue());

end

4.6. Delta based score calculation

It's recommended to use Drools in forward-chaining mode (which is the default behaviour),

because this will create the effect of a delta based score calculation, instead of a full score

calculation on each solution evaluation. For example, if a single queen A moves from y 0 to 3, it

won't bother to recalculate the "multiple queens on the same horizontal line" constraint between

2 queens if neither of those involved queens is queen A.

This is a huge performance and scalibility gain. Drools Planner gives you this huge scalibility

gain without forcing you to write a very complicated delta based score calculation

algorithm. Just let the Drools rule engine do the hard work.

Tips and tricks

59

Figure 4.1. Delta based score calculation for the 4 queens puzzle

The speedup due to delta based score calculation is huge, because the speedup is relative to

the size of your planning problem (your n). By using score rules, you get that speedup without

writing any delta code.

4.7. Tips and tricks

• If you know a certain constraint can never be broken, don't bother writing a score rule for it.

For example in n queens, there is no "multipleQueensVertical" rule because a Queen's column

never changes and each Solution build puts each Queen on a different column. This tends to

give a huge performance gain, not just because the score function is faster, but mainly because

most Solver implementations will spend less time evaluating unfeasible solutions.

• Be watchfull for score traps. A score trap is a state in which several moves need to be done to

resolve or lower the weight of a single constraint occurrence. Some examples of score traps:

• If you need 2 doctors at each table, but you're only moving 1 doctor at a time, then the solver

has no insentive to move a doctor to a table with no doctors. Punish a table with no doctors

more then a table with only 1 doctor in your score function.

Chapter 4. Score calculation ...

60

• If you only add the table as a cause of the ConstraintOccurrence and forget the jobType

(which is doctor or politician), then the solver has no insentive to move a docter to table which

is short of a doctor and a politician.

• If you use tabu search, combine it with a minimalAcceptedSelection selector. Take some

time to tweak the value of minimalAcceptedSelection.

• Verify that your score calculation happens in the correct Number type. If you're making the sum

of integer values, don't let drools use Double's or your performance will hurt. The Solver will

usually spend most of its execution time running the score function.

• Always remember that premature optimization is the root of all evil. Make sure your design is

flexible enough to allow configuration based tweaking.

• Currently, don't allow drools to backward chain instead of forward chain, so avoid query's. It

kills delta based score calculation (so it kills scalibility).

• Currently, don't allow drools to switch to MVEL mode, for performance.

• For optimal performance, use at least java 1.6 and always use server mode (java -server).

We have seen performance increases of 30% by switching from java 1.5 to 1.6 and 50% by

turning on server mode.

• If you're doing performance tests, always remember that the JVM needs to warm up. First load

your Solver and do a short run, before you start benchmarking it.

In case you haven't figured it out yet: performance (and scalability) is very important for solving

planning problems well. What good is a real-time freight routing solver that takes a day to find

a feasible solution? Even small and innocent looking problems can hide an enormous problem

size. For example, they probably still don't know the optimal solution of the traveling tournament

problem for as little as 12 traveling teams.

Chapter 5.

61

Chapter 5. Optimization algorithms

5.1. The size of real world problems

In number of possible solutions for a planning problem can be mind blowing. For example:

• 4 queens has 256 possible solutions (4 ^ 4) and 2 optimal solutions.

• 5 queens has 3125 possible solutions (5 ^ 5) and 1 optimal solution.

• 8 queens has 16777216 possible solutions (8 ^ 8) and 92 optimal solutions.

• 64 queens has more than 10^115 possible solutions (64 ^ 64).

• Most real-life planning problems have an incredible number of possible solutions and only 1 or

a few optimal solutions.

For comparison: the minimal number of atoms in the known universe (10^80). As a planning

problem gets bigger, the search space tends to blow up really fast. Adding only 1 extra planning

entity or planning value can heavily multiply the running time of some algorithms.

An algorithm that checks every possible solution (even with pruning) can easily run for billions of

years on a single real-life planning problem. What we really want is to find the best solution in

the limited time at our disposal. Planning competitions (such as the International Timetabling

Competition) show that local search variations (tabu search, simulated annealing, ...) usually

perform best for real-world problems given real-world time limitations.

5.2. The secret sauce of Drools Planner

Drools Planner is the first framework to combine optimization algorithms (metaheuristics, ...) with

score calculation by a rule engine such as Drools Expert. This combination turns out to be a very

efficient, because:

• A rule engine such as Drools Expert is great for calculating the score of a solution of a planning

problem. It make it easy and scalable to add additional soft or hard constraints such as "a

teacher shouldn't teach more then 7 hours a day". It does delta based score calculation without

any extra code. However it tends to be not suited to use to actually find new solutions.

• An optimization algorithm is great at finding new improving solutions for a planning problem,

without necessarily brute-forcing every possibility. However it needs to know the score of a

solution and offers no support in calculating that score efficiently.

Chapter 5. Optimization algor...

62

5.3. Optimization algorithms overview

Table 5.1. Optimization algorithms overview

Algorithm Scalable? Optimal

solution?

Needs little

configuration?

Highly

configurable?

Requires

initialized

solution?

Exact

algorithms

 Brute force 0/5 5/5 -

Guaranteed

5/5 0/5 No

 Branch and

bound

0/5 5/5 -

Guaranteed

4/5 1/5 No

Construction

heuristics

 First Fit 5/5 1/5 - Stops

after

initialization

5/5 1/5 No

 First Fit

Decreasing

5/5 2/5 - Stops

after

initialization

4/5 2/5 No

 Best Fit 5/5 2/5 - Stops

after

initialization

4/5 2/5 No

 Best Fit

Decreasing

5/5 2/5 - Stops

after

initialization

4/5 2/5 No

 Cheapest

Insertion

3/5 2/5 - Stops

after

initialization

5/5 2/5 No

Metaheuristics

 Local search

 Hill-

climbing

4/5 2/5 - Gets

stuck in local

optima

3/5 3/5 Yes

 Tabu

search

4/5 4/5 3/5 5/5 Yes

 Simulated

annealing

4/5 4/5 2/5 5/5 Yes

Which optimization algorithms should I use?

63

Algorithm Scalable? Optimal

solution?

Needs little

configuration?

Highly

configurable?

Requires

initialized

solution?

 Evolutionary

algorithms

 Evolutionary

strategies

4/5 ?/5 ?/5 ?/5 Yes

 Genetic

algorithms

4/5 ?/5 ?/5 ?/5 Yes

If you want to learn more about metaheuristics, read the free book Essentials of

Metaheuristics [http://www.cs.gmu.edu/~sean/book/metaheuristics/] or Clever Algorithms [http://

www.cleveralgorithms.com/].

5.4. Which optimization algorithms should I use?

The best optimization algorithms configuration for your use case depends heavily on your use

case. Nevertheless, this vanilla recipe will get you into the game with a pretty good configuration,

probably much better than what you're used to.

Start with a quick configuration that involves little or no configuration and optimization code:

1. First Fit

Next, implement planning entity difficulty comparison and turn it into:

1. First Fit Decreasing

Next, implement moves and add tabu search behind it:

1. First Fit Decreasing

2. Tabu search (use property tabu or move tabu)

At this point the free lunch is over. The return on invested time lowers. The result is probably

already more than good enough.

But you can do even better, at a lower return on invested time. Use the Benchmarker and try a

couple of simulated annealing configurations:

1. First Fit Decreasing

2. Simulated annealing (try several starting temperatures)

http://www.cs.gmu.edu/~sean/book/metaheuristics/
http://www.cs.gmu.edu/~sean/book/metaheuristics/
http://www.cs.gmu.edu/~sean/book/metaheuristics/
http://www.cleveralgorithms.com/
http://www.cleveralgorithms.com/
http://www.cleveralgorithms.com/

Chapter 5. Optimization algor...

64

And combine them with tabu search:

1. First Fit Decreasing

2. Simulated annealing (relatively long time)

3. Tabu search (relatively short time)

If you have time, continue experimenting even further. Blog about your experiments!

5.5. SolverPhase

A Solver can use multiple optimization algorithms in sequence. Each optimization algorithm is

represented by a SolverPhase. There is never more than 1 SolverPhase solving at the same

time.

Note

Some SolverPhase implementations can combine techniques from multiple

optimization algorithms, but they are still just 1 SolverPhase. For example: a local

search SolverPhase can do simulated annealing with property tabu.

Here's a configuration that runs 3 phases in sequence:

<solver>

 ...

 <constructionHeuristic>

 ... <!-- Phase 1: First Fit decreasing -->

 </constructionHeuristic>

 <localSearch>

 ... <!-- Phase 2: Simulated annealing -->

 </localSearch>

 <localSearch>

 ... <!-- Phase 3: Tabu search -->

 </localSearch>

</solver>

When the first phase terminates, the second phase starts, and so on. When the last phase

terminates, the Solver terminates.

Some phases (especially construction heuristics) will terminate automatically. Other phases

(especially metaheuristics) will only terminate if the phase is configured to terminate:

<solver>

 ...

Termination

65

 <termination><!-- Solver termination -->

 <maximumSecondsSpend>90</maximumSecondsSpend>

 </termination>

 <localSearch>

 <termination><!-- Phase termination -->

 <maximumSecondsSpend>60</maximumSecondsSpend><!-- Give the next phase a

 chance to run too, before the Solver terminates -->

 </termination>

 ...

 </localSearch>

 <localSearch>

 ...

 </localSearch>

</solver>

If the Solver terminates (before the last phase terminates itself), the current phase is terminated

and all subsequent phases won't run.

5.6. Termination

Not all phases terminate automatically and sometimes you don't want to wait that long anyway.

A Solver can be terminated synchronously by up-front configuration or asynchronously from

another thread.

Especially metaheuristics phases will need to be told when to stop solving. This can be because

of a number of reasons: the time is up, the perfect score has been reached, ... The only thing you

can't depend on is on finding the optimal solution (unless you know the optimal score), because a

metaheuristics algorithm generally doesn't know it when it finds the optimal solution. For real-life

problems this doesn't turn out to be much of a problem, because finding the optimal solution could

take billions of years, so you 'll want to terminate sooner anyway. The only thing that matters is

finding the best solution in the available time.

For synchronous termination, configure a Termination on a Solver or a SolverPhase when

it needs to stop. You can implement your own Termination, but the build-in implementations

should suffice for most needs. Every Termination can calculate a time gradient (needed for

some optimization algorithms), which is a ratio between the time already spend solving and the

estimated entire solving time of the Solver or SolverPhase.

5.6.1. TimeMillisSpendTermination

Terminates when an amount of time has been reached:

 <termination>

 <maximumTimeMillisSpend>500</maximumTimeMillisSpend>

 </termination>

Chapter 5. Optimization algor...

66

 <termination>

 <maximumSecondsSpend>10</maximumSecondsSpend>

 </termination>

 <termination>

 <maximumMinutesSpend>5</maximumMinutesSpend>

 </termination>

 <termination>

 <maximumHoursSpend>1</maximumHoursSpend>

 </termination>

Note

If you use this Termination, you will most likely sacrifice perfect reproducibility

(even with environmentMode REPRODUCIBLE) because of an available CPU time

difference:

• The available CPU time influences the number of steps that can be taken, which

might be a few more or less.

• The Termination might produce slightly different time gradient values, which

will send time gradient based algorithms (such as simulated annealing) on a

different path.

5.6.2. ScoreAttainedTermination

Terminates when a certain score has been reached. You can use this Termination if you know

the perfect score, for example for 4 queens:

 <termination>

 <scoreAttained>0</scoreAttained>

 </termination>

For a planning problem with hard and soft constraints, it could look like this:

 <termination>

 <scoreAttained>0hard/-5000soft</scoreAttained>

StepCountTermination

67

 </termination>

You can use this Termination to terminate once it reaches a feasible solution.

5.6.3. StepCountTermination

Terminates when an amount of steps has been reached:

 <termination>

 <maximumStepCount>100</maximumStepCount>

 </termination>

This Termination can only be used for a SolverPhase, not for the Solver itself.

5.6.4. UnimprovedStepCountTermination

Terminates when the best score hasn't improved in a number of steps:

 <termination>

 <maximumUnimprovedStepCount>100</maximumUnimprovedStepCount>

 </termination>

If it hasn't improved recently, it's probably not going to improve soon anyway and it's not worth the

effort to continue. We have observed that once a new best solution is found (even after a long time

of no improvement on the best solution), the next few step tend to improve the best solution too.

5.6.5. Combining Terminations

Terminations can be combined, for example: terminate after 100 steps or if a score of 0 has been

reached:

 <termination>

 <terminationCompositionStyle>OR</terminationCompositionStyle>

 <maximumStepCount>100</maximumStepCount>

 <scoreAttained>0</scoreAttained>

 </termination>

Alternatively you can use AND, for example: terminate after reaching a feasible score of at least

-100 and no improvements in 5 steps:

 <termination>

 <terminationCompositionStyle>AND</terminationCompositionStyle>

Chapter 5. Optimization algor...

68

 <maximumUnimprovedStepCount>5</maximumUnimprovedStepCount>

 <scoreAttained>-100</scoreAttained>

 </termination>

This example ensures it doesn't just terminate after finding a feasible solution, but also completes

any obvious improvements on that solution before terminating.

5.6.6. Asynchronous termination from another thread

Sometimes you 'll want to terminate a Solver early from another thread, for example because a

user action or a server restart. That cannot be configured by a Termination as it's impossible to

predict when and if it will occur. Therefor the Solver interface has these 2 thread-safe methods:

public interface Solver {

 // ...

 boolean terminateEarly();

 boolean isTerminateEarly();

}

If you call the terminateEarly() method from another thread, the Solver will terminate at its

earliest convenience and the solve() method will return in the original Solver thread.

5.7. Custom SolverPhase

Between phases or before the first phase, you might want to execute a custom action on the

Solution to get a better score. Yet you'll still want to reuse the score calculation. For example, to

implement a custom construction heuristic without implementing an entire SolverPhase.

Note

Most of the time, a custom construction heuristic is not worth the hassle. The

supported constructions heuristics are configurable (so you can tweak them with

the Benchmarker), Termination aware and support partially initialized solutions

too.

Implement the CustomSolverPhaseCommand interface:

public interface CustomSolverPhaseCommand {

 void changeWorkingSolution(SolutionDirector solutionDirector);

Custom SolverPhase

69

}

For example:

public class ExaminationSolutionInitializer implements CustomSolverPhaseCommand

 {

 public void changeWorkingSolution(SolutionDirector solutionDirector) {

 Examination examination = (Examination)

 solutionDirector.getWorkingSolution();

 for (Exam exam : examination.getExamList()) {

 Score unscheduledScore =

 solutionDirector.calculateScoreFromWorkingMemory();

 ...

 for (Period period : examination.getPeriodList()) {

 exam.setPeriod(period)

 workingMemory.update(examHandle, exam);

 Score score = solutionDirector.calculateScoreFromWorkingMemory();

 ...

 }

 ...

 }

 }

}

Warning

Any change on the planning entities in a CustomSolverPhaseCommand must be told

to the WorkingMemory of solutionDirector.getWorkingMemory().

Warning

Do not change any of the planning facts in a CustomSolverPhaseCommand. That

will corrupt the Solver because any previous score or solution was for a different

problem. If you want to do that, see repeated planning and real-time planning

instead.

And configure it like this:

<solver>

Chapter 5. Optimization algor...

70

 ...

 <customSolverPhase>

 <customSolverPhaseCommandClass>org.drools.planner.examples.examination.solver.solution.initializer.ExaminationSolutionInitializer</

customSolverPhaseCommandClass>

 </customSolverPhase>

 ... <!-- Other phases -->

</solver>

It's possible to configure multiple customSolverPhaseCommandClass instances, which will be run

in sequence.

Note

If the changes of a CustomSolverPhaseCommand don't result in a better score,

the best solution won't be changed (so effectively nothing will have changed for

the next SolverPhase or CustomSolverPhaseCommand). TODO: we might want to

change this behaviour?

Note

If the Solver or SolverPhase wants to terminate while a

CustomSolverPhaseCommand is still running, it will wait to terminate until the

CustomSolverPhaseCommand is done.

Chapter 6.

71

Chapter 6. Exact methods

6.1. Overview

Exact methods will always find the global optimum and recognize it too. That being said, they don't

scale (not even beyond toy problems) and are therefor mostly useless.

6.2. Brute Force

6.2.1. Algorithm description

The brute force algorithm creates and evaluates every possible solution.

Chapter 6. Exact methods

72

Configuration

73

Notice that it creates a search tree that explodes as the problem size increases. Brute force is

mostly unusable for a real-world problem due to time limitations.

6.2.2. Configuration

Using the brute force algorithm is easy:

<solver>

 ...

 <bruteForce>

 </bruteForce>

</solver>

6.3. Branch and bound

6.3.1. Algorithm description

Branch and bound is an improvement over brute force, as it prunes away subsets of solutions

which cannot have a better solution than the best solution already found at that point.

Chapter 6. Exact methods

74

Configuration

75

Notice that it (like brute force) creates a search tree that explodes (but less than brute force) as

the problem size increases. Branch and bound is mostly unusable for a real-world problem

due to time limitations.

It can determine a lower bound of problem. A lower bound is a score which is proven to be higher

than the optimal score of a problem. So it gives an indication of the quality of any best solution

found for that problem: the closer to best score is to the lower bound, the better.

6.3.2. Configuration

Branch and bound is not yet implemented in Drools Planner. Patches welcome.

76

Chapter 7.

77

Chapter 7. Construction heuristics

7.1. Overview

A construction heuristic builds a pretty good initial solution in a finite length of time. Its solution

isn't always feasible, but it finds it fast and metaheuristics can finish the job.

Construction heuristics terminate automatically, so there's usually no need to configure a

Termination on the construction heuristic phase specifically.

7.2. First Fit

7.2.1. Algorithm description

The First Fit algorithm cycles through all the planning entity (in default order), initializing 1 planning

entity at a time. It assigns the planning entity to the best available planning value, taking the

already initialized planning entities into account. It terminates when all planning entities have been

initialized. It never changes a planning entity after it has been assigned.

Chapter 7. Construction heuri...

78

Configuration

79

Notice that it starts with putting Queen A into row 0 (and never moving it later), which makes it

impossible reach the optimal solution. Suffixing this construction heuristic with metaheurstics can

remedy that.

7.2.2. Configuration

Configure this SolverPhase:

 <constructionHeuristic>

 <constructionHeuristicType>FIRST_FIT</constructionHeuristicType>

 <!-- Speedup that can be applied to most, but not all use cases: -->

 <!--

 <constructionHeuristicPickEarlyType>FIRST_LAST_STEP_SCORE_EQUAL_OR_IMPROVING</

constructionHeuristicPickEarlyType> -->

 </constructionHeuristic>

Note

The constructionHeuristicPickEarlyType of

FIRST_LAST_STEP_SCORE_EQUAL_OR_IMPROVING is a big speedup, which should

be applied when initializing a planning entity can only make the score lower or

equal. So if:

• There are no positive constraints.

• There is no negative constraint that can stop been broken by adding a planning

entity (except if another negative constraint gets broken which outweighs it the

first negative constraint).

If that is not the case, then it can still be good to apply it in some cases, but not in

most cases. Use the Benchmarker to decide.

7.3. First Fit Decreasing

7.3.1. Algorithm description

Like First Fit, but assigns the more difficult planning entities first, because they are less likely

to fit in the leftovers. So it sorts the planning entities on decreasing difficulty.

Requires the model to support planning entity difficulty comparison.

Chapter 7. Construction heuri...

80

Configuration

81

Note

One would expect that this algorithm always performs better than First Fit.

That's not always the case, but usually is.

7.3.2. Configuration

Configure this SolverPhase:

 <constructionHeuristic>

 <constructionHeuristicType>FIRST_FIT_DECREASING</constructionHeuristicType>

 <!-- Speedup that can be applied to most, but not all use cases: -->

 <!--

 <constructionHeuristicPickEarlyType>FIRST_LAST_STEP_SCORE_EQUAL_OR_IMPROVING</

constructionHeuristicPickEarlyType> -->

 </constructionHeuristic>

7.4. Best Fit

7.4.1. Algorithm description

Like First Fit, but uses the weaker planning values first, because the strong planning values

are more likely to be able to accomodate later planning entities. So it sorts the planning values

on increasing strength.

Requires the model to support planning value strength comparison.

Note

One would expect that this algorithm always performs better than First Fit.

That's not always the case.

7.4.2. Configuration

Configure this SolverPhase:

 <constructionHeuristic>

 <constructionHeuristicType>BEST_FIT</constructionHeuristicType>

 <!-- Speedup that can be applied to most, but not all use cases: -->

 <!--

 <constructionHeuristicPickEarlyType>FIRST_LAST_STEP_SCORE_EQUAL_OR_IMPROVING</

constructionHeuristicPickEarlyType> -->

Chapter 7. Construction heuri...

82

 </constructionHeuristic>

7.5. Best Fit Decreasing

7.5.1. Algorithm description

Combines First Fit Decreasing and Best Fit. So it sorts the planning entities on decreasing

difficulty and the planning values on increasing strength.

Requires the model to support planning entity difficulty comparison and planning value strength

comparison.

Note

One would expect that this algorithm always performs better than First Fit,

First Fit Decreasing and Best Fit. That's not always the case.

7.5.2. Configuration

Configure this SolverPhase:

 <constructionHeuristic>

 <constructionHeuristicType>BEST_FIT_DECREASING</constructionHeuristicType>

 <!-- Speedup that can be applied to most, but not all use cases: -->

 <!--

 <constructionHeuristicPickEarlyType>FIRST_LAST_STEP_SCORE_EQUAL_OR_IMPROVING</

constructionHeuristicPickEarlyType> -->

 </constructionHeuristic>

7.6. Cheapest insertion

7.6.1. Algorithm description

TODO

7.6.2. Configuration

TODO Not implemented yet.

Chapter 8.

83

Chapter 8. Local search solver

8.1. Overview

Local search starts from an initial solution and evolves that single solution into a mostly better

and better solution. It uses a single search path of solutions, not a search tree. At each solution

in this path it evaluates a number of moves on the solution and applies the most suitable move

to take the step to the next solution. It does that for high number of iterations until its terminated

(usually because its time has run out).

Local search acts a lot like a human planner: it uses a single search path and moves facts around

to find a good feasible solution. Therefore it's pretty natural to implement.

Local search needs to start from an initialized solution, therefor it's recommended to configure

a construction heuristic solver phase before it.

8.2. Hill climbing (simple local search)

8.2.1. Algorithm description

Hill climbing can easily get stuck in a local optima, but improvements (such as tabu search and

simulated annealing) address this problem.

8.3. Tabu search

8.3.1. Algorithm description

Like hill climbing, but maintains a tabu list to avoid getting stuck in local optima. See Tabu Search

accepter below.

8.4. Simulated annealing

8.4.1. Algorithm description

See Simulated Annealing accepter below.

8.5. About neighborhoods, moves and steps

8.5.1. A move

A move is the change from a solution A to a solution B. For example, below you can see a single

move on the starting solution of 4 queens that moves a single queen to another row:

Chapter 8. Local search solver

84

Figure 8.1. A single move (4 queens example)

A move can have a small or large impact. In the above example, the move of queen C0 to C2

is a small move. Some moves are the same move type. These are some possibilities for move

types in n queens:

• Move a single queen to another row. This is a small move. For example, move queen C0 to C2.

• Move all queens a number of rows down or up. This a big move.

• Move a single queen to another column. This is a small move. For example, move queen C2

to A0 (placing it on top of queen A0).

• Add a queen to the board at a certain row and column.

• Remove a queen from the board.

Because we have decided that all queens will be on the board at all times and each queen has

an appointed column (for performance reasons), only the first 2 move types are usable in our

example. Furthermore, we 're only using the first move type in the example because we think it

gives the best performance, but you are welcome to prove us wrong.

Each of your move types will be an implementation of the Move interface:

public interface Move {

 boolean isMoveDoable(EvaluationHandler evaluationHandler);

 Move createUndoMove(EvaluationHandler evaluationHandler);

 void doMove(EvaluationHandler evaluationHandler);

}

Let's take a look at the Move implementation for 4 queens which moves a queen to a different row:

public class RowChangeMove implements Move {

A move

85

 private Queen queen;

 private Row toRow;

 public RowChangeMove(Queen queen, Row toRow) {

 this.queen = queen;

 this.toRow = toRow;

 }

 // ... see below

}

An instance of RowChangeMove moves a queen from its current row to a different row.

Drools Planner calls the doMove(WorkingMemory) method to do a move. The Move implementation

must notify the working memory of any changes it does on the solution facts:

 public void doMove(WorkingMemory workingMemory) {

 FactHandle queenHandle = workingMemory.getFactHandle(queen);

 queen.setRow(toRow);

 workingMemory.update(queenHandle, queen); // after changes are made

 }

You need to call the workingMemory.update(FactHandle, Object) method after modifying the

fact. Note that you can alter multiple facts in a single move and effectively create a big move (also

known as a coarse-grained move).

Drools Planner automatically filters out non doable moves by calling the

isDoable(WorkingMemory) method on a move. A non doable move is:

• A move that changes nothing on the current solution. For example, moving queen B0 to row 0

is not doable, because it is already there.

• A move that is impossible to do on the current solution. For example, moving queen B0 to row

10 is not doable because it would move it outside the board limits.

In the n queens example, a move which moves the queen from its current row to the same row

isn't doable:

 public boolean isMoveDoable(WorkingMemory workingMemory) {

 return !ObjectUtils.equals(queen.getRow(), toRow);

 }

Because we won't generate a move which can move a queen outside the board limits, we don't

need to check it. A move that is currently not doable can become doable on a later solution.

Chapter 8. Local search solver

86

Each move has an undo move: a move (usually of the same type) which does the exact opposite.

In the above example the undo move of C0 to C2 would be the move C2 to C0. An undo move

can be created from a move, but only before the move has been done on the current solution.

 public Move createUndoMove(WorkingMemory workingMemory) {

 return new RowChangeMove(queen, queen.getRow());

 }

Notice that if C0 would have already been moved to C2, the undo move would create the move

C2 to C2, instead of the move C2 to C0.

The local search solver can do and undo a move more than once, even on different (successive)

solutions.

A move must implement the equals() and hashcode() methods. 2 moves which make the same

change on a solution, must be equal.

 public boolean equals(Object o) {

 if (this == o) {

 return true;

 } else if (o instanceof RowChangeMove) {

 RowChangeMove other = (RowChangeMove) o;

 return new EqualsBuilder()

 .append(queen, other.queen)

 .append(toRow, other.toRow)

 .isEquals();

 } else {

 return false;

 }

 }

 public int hashCode() {

 return new HashCodeBuilder()

 .append(queen)

 .append(toRow)

 .toHashCode();

 }

In the above example, the Queen class uses the default Object equal() and hashcode()

implementations. Notice that it checks if the other move is an instance of the same move type.

This is important because a move will be compared to a move with another move type if you're

using more then 1 move type.

It's also recommended to implement the toString() method as it allows you to read Drools

Planner's logging more easily:

Move generation

87

 public String toString() {

 return queen + " => " + toRow;

 }

Now that we can make a single move, let's take a look at generating moves.

8.5.2. Move generation

At each solution, local search will try all possible moves and pick the best move to change to the

next solution. It's up to you to generate those moves. Let's take a look at all the possible moves

on the starting solution of 4 queens:

Figure 8.2. Possible moves at step 0 (4 queens example)

As you can see, not all the moves are doable. At the starting solution we have 12 doable moves

(n * (n - 1)), one of which will be move which changes the starting solution into the next

solution. Notice that the number of possible solutions is 256 (n ^ n), much more that the amount

of doable moves. Don't create a move to every possible solution. Instead use moves which can

be sequentially combined to reach every possible solution.

It's highly recommended that you verify all solutions are connected by your move set. This

means that by combining a finite number of moves you can reach any solution from any solution.

Otherwise you're already excluding solutions at the start. Especially if you're using only big moves,

you should check it. Just because big moves outperform small moves in a short test run, it doesn't

mean that they will outperform them in a long test run.

You can mix different move types. Usually you're better off preferring small (fine-grained) moves

over big (course-grained) moves because the score delta calculation will pay off more. However,

as the traveling tournament example proves, if you can remove a hard constraint by using a certain

set of big moves, you can win performance and scalability. Try it yourself: run both the simple

(small moves) and the smart (big moves) version of the traveling tournament example. The smart

version evaluates a lot less unfeasible solutions, which enables it to outperform and outscale the

simple version.

Chapter 8. Local search solver

88

Move generation currently happens with a MoveFactory:

public class NQueensMoveFactory extends CachedMoveListMoveFactory {

 public List<Move> createMoveList(Solution solution) {

 NQueens nQueens = (NQueens) solution;

 List<Move> moveList = new ArrayList<Move>();

 for (Queen queen : nQueens.getQueenList()) {

 for (int y : nQueens.getRowList()) {

 moveList.add(new YChangeMove(queen, y));

 }

 }

 return moveList;

 }

}

But we might be making move generation part of the DRL's in the future.

8.5.3. A step

A step is the winning move. The local search solver tries every move on the current solution and

picks the best accepted move as the step:

Figure 8.3. Decide the next step at step 0 (4 queens example)

A step

89

Because the move B0 to B3 has the highest score (-3), it is picked as the next step. Notice that

C0 to C3 (not shown) could also have been picked because it also has the score -3. If multiple

moves have the same highest score, one is picked randomly, in this case B0 to B3.

The step is made and from that new solution, the local search solver tries all the possible moves

again, to decide the next step after that. It continually does this in a loop, and we get something

like this:

Chapter 8. Local search solver

90

Figure 8.4. All steps (4 queens example)

Notice that the local search solver doesn't use a search tree, but a search path. The search path

is highlighted by the green arrows. At each step it tries all possible moves, but unless it's the

Getting stuck in local optima

91

step, it doesn't investigate that solution further. This is one of the reasons why local search is

very scalable.

As you can see, the local search solver solves the 4 queens problem by starting with the starting

solution and make the following steps sequentially:

1. B0 to B3

2. D0 to B2

3. A0 to B1

If we turn on DEBUG logging for the category org.drools.planner, then those steps are shown

into the log:

INFO Solver started: time spend (0), score (-6), new best score (-6), random

 seed (0).

DEBUG Step index (0), time spend (20), score (-3), new best score (-3),

 accepted move size (12) for picked step (col1@row0 => row3).

DEBUG Step index (1), time spend (31), score (-1), new best score (-1),

 accepted move size (12) for picked step (col0@row0 => row1).

DEBUG Step index (2), time spend (40), score (0), new best score (0), accepted

 move size (12) for picked step (col3@row0 => row2).

INFO Phase local search finished: step total (3), time spend (41), best score (0).

INFO Solved: time spend (41), best score (0), average calculate count per

 second (1780).

Notice that the logging uses the toString() method of our Move implementation: col1@row0 =>

row3.

The local search solver solves the 4 queens problem in 3 steps, by evaluating only 37

possible solutions (3 steps with 12 moves each + 1 starting solution), which is only fraction

of all 256 possible solutions. It solves 16 queens in 31 steps, by evaluating only 7441 out of

18446744073709551616 possible solutions. Note: with construction heurstistics it's even a lot

more efficient.

8.5.4. Getting stuck in local optima

A hill climber always takes improving moves. This may seem like a good thing, but it's not. It

suffers from a number of problems:

• It can get stuck in a local optimum. For example if it reaches a solution X with a score -1 and

there is no improving move, it is forced to take a next step that leads to a solution Y with score

-2, after that however, it's very real that it will pick the step back to solution X with score -1. It

will then start looping between solution X and Y.

Chapter 8. Local search solver

92

• It can start walking in its own footsteps, picking the same next step at every step.

Of course Drools Planner implements better local searches, such as tabu search and simulated

annealing which can avoid these problems. We recommend to never use a hill climber, unless

you're absolutely sure there are no local optima in your planning problem.

8.6. Deciding the next step

The local search solver decides the next step with the aid of 3 configurable components:

• A selector which selects (or generates) the possible moves of the current solution.

• An acceptor which filters out unacceptable moves. It can also weigh a move it accepts.

• A forager which gathers all accepted moves and picks the next step from them.

Figure 8.5. Decide the next step at step 0 (4 queens example)

In the above example the selector generated the moves shown with the blue lines, the acceptor

accepted all of them and the forager picked the move B0 to B3.

If we turn on TRACE logging for the category org.drools.planner, then the decision making is

shown in the log:

INFO Solver started: time spend (0), score (-6), new best score (-6), random

 seed (0).

Selector

93

TRACE Ignoring not doable move (col0@row0 => row0).

TRACE Move score (-4), accepted (true) for move (col0@row0 => row1).

TRACE Move score (-4), accepted (true) for move (col0@row0 => row2).

TRACE Move score (-4), accepted (true) for move (col0@row0 => row3).

...

TRACE Move score (-3), accepted (true) for move (col1@row0 => row3).

...

TRACE Move score (-3), accepted (true) for move (col2@row0 => row3).

...

TRACE Move score (-4), accepted (true) for move (col3@row0 => row3).

DEBUG Step index (0), time spend (6), score (-3), new best score (-3),

 accepted move size (12) for picked step (col1@row0 => row3).

...

8.6.1. Selector

A selector is currently based on a MoveFactory.

 <selector>

 <moveFactoryClass>org.drools.planner.examples.nqueens.solver.NQueensMoveFactory</

moveFactoryClass>

 </selector>

You're not obligated to generate the same set of moves at each step. It's generally a good idea

to use several selectors, mixing fine grained moves and course grained moves:

 <selector>

 <selector>

 <moveFactoryClass>org.drools.planner.examples.nurserostering.solver.move.factory.EmployeeChangeMoveFactory</

moveFactoryClass>

 </selector>

 <selector>

 <moveFactoryClass>org.drools.planner.examples.nurserostering.solver.move.factory.ShiftAssignmentSwitchMoveFactory</

moveFactoryClass>

 </selector>

 <selector>

 <moveFactoryClass>org.drools.planner.examples.nurserostering.solver.move.factory.ShiftAssignmentPillarPartSwitchMoveFactory</

moveFactoryClass>

 </selector>

 </selector>

Chapter 8. Local search solver

94

8.6.2. Acceptor

An acceptor is used (together with a forager) to active tabu search, simulated annealing, great

deluge, ... For each move it checks whether it is accepted or not.

You can implement your own Acceptor, although the build-in acceptors should suffice for most

needs. You can also combine multiple acceptors.

8.6.2.1. Tabu search acceptor

When tabu search takes steps it creates tabu's. It does not accept a move as the next step if that

move breaks tabu. Drools Planner implements several tabu types:

• Solution tabu makes recently visited solutions tabu. It does not accept a move that leads to one

of those solutions. If you can spare the memory, don't be cheap on the tabu size.

 <acceptor>

 <solutionTabuSize>1000</solutionTabuSize>

 </acceptor>

• Move tabu makes recent steps tabu. It does not accept a move equal to one of those steps.

 <acceptor>

 <moveTabuSize>7</moveTabuSize>

 </acceptor>

• Undo move tabu makes the undo move of recent steps tabu.

 <acceptor>

 <undoMoveTabuSize>7</undoMoveTabuSize>

 </acceptor>

• Property tabu makes a property of recent steps tabu. For example, it can make the queen tabu,

so that a recently moved queen can't be moved.

 <acceptor>

 <propertyTabuSize>5</propertyTabuSize>

 </acceptor>

To use property tabu, your moves must implement the TabuPropertyEnabled interface, for

example:

Acceptor

95

public class YChangeMove implements Move, TabuPropertyEnabled {

 private Queen queen;

 private Row toRow;

 // ...

 public List<? extends Object> getTabuPropertyList() {

 return Collections.singletonList(queen);

 }

}

You can also make multiple properties tabu (with OR or AND semantics):

 public List<? extends Object> getTabuPropertyList() {

 // tabu with other moves that contain the same leftExam OR the

 same rightExam

 return Arrays.asList(leftExam, rightExam);

 }

 public List<? extends Object> getTabuPropertyList() {

 // tabu with other moves that contain the same exam AND the same

 toPeriod (but not necessary the same toRoom)

 return Collections.singletonList(Arrays.asList(exam, toPeriod));

 }

You can even combine tabu types:

 <acceptor>

 <solutionTabuSize>1000</solutionTabuSize>

 <moveTabuSize>7</moveTabuSize>

 </acceptor>

If you pick a too small tabu size, your solver can still get stuck in a local optimum. On the other

hand, with the exception of solution tabu, if you pick a too large tabu size, your solver can get

stuck by bouncing of the walls. Use the benchmarker to fine tweak your configuration. Experiments

teach us that it is generally best to use a prime number for the move tabu, undo move tabu or

property tabu size.

A tabu search acceptor should be combined with a high or no subset selection.

Chapter 8. Local search solver

96

8.6.2.2. Simulated annealing acceptor

Simulated annealing does not always pick the move with the highest score, neither does it evaluate

many moves per step. At least at first. Instead, it gives unimproving moves also a chance to be

picked, depending on its score and the time gradient of the Termination. In the end, it gradually

turns into a hill climber, only accepting improving moves.

In many use cases, simulated annealing surpasses tabu search. By changing a few lines of

configuration, you can easily switch from tabu search to simulated annealing and back.

Start with a simulatedAnnealingStartingTemperature set to the maximum score delta a single

move can cause. Use the Benchmarker to tweak the value.

 <acceptor>

 <simulatedAnnealingStartingTemperature>2hard/100soft</

simulatedAnnealingStartingTemperature>

 </acceptor>

 <forager>

 <minimalAcceptedSelection>4</minimalAcceptedSelection>

 </forager>

A simulated annealing acceptor should be combined with a low subset selection. The classic

algorithm uses a minimalAcceptedSelection of 1, but usually 4 performs better.

You can even combine it with a tabu acceptor at the same time. Use a lower tabu size than in

a pure tabu search configuration.

 <acceptor>

 <simulatedAnnealingStartingTemperature>10.0</

simulatedAnnealingStartingTemperature>

 <propertyTabuSize>5</propertyTabuSize>

 </acceptor>

 <forager>

 <minimalAcceptedSelection>4</minimalAcceptedSelection>

 </forager>

This differs from phasing, another powerful technique, where first simulated annealing is used,

followed by tabu search.

8.6.3. Forager

A forager gathers all accepted moves and picks the move which is the next step. Normally it picks

the accepted move with the highest score. If several accepted moves have the highest score, one

is picked randomly.

You can implement your own Forager, although the build-in forager should suffice for most needs.

Forager

97

8.6.3.1. Subset selection

When there are many possible moves, it becomes inefficient to evaluate all of them at every step.

To evaluate only a random subset of all the moves, use:

• An minimalAcceptedSelection integer, which specifies how many accepted moves should

have be evaluated during each step. By default it is positive infinity, so all accepted moves are

evaluated at every step.

 <forager>

 <minimalAcceptedSelection>1000</minimalAcceptedSelection>

 </forager>

Unlike the n queens problem, real world problems require the use of subset selection. Start from

an minimalAcceptedSelection that takes a step in less then 2 seconds. Turn on INFO logging

to see the step times. Use the Benchmarker to tweak the value.

8.6.3.2. Pick early type

A forager can pick a move early during a step, ignoring subsequent selected moves. There are

3 pick early types:

• NEVER: A move is never picked early: all accepted moves are evaluated that the selection allows.

This is the default.

 <forager>

 <pickEarlyType>NEVER</pickEarlyType>

 </forager>

• FIRST_BEST_SCORE_IMPROVING: Pick the first accepted move that improves the best score. If

none improve the best score, it behaves exactly like the pickEarlyType NEVER.

 <forager>

 <pickEarlyType>FIRST_BEST_SCORE_IMPROVING</pickEarlyType>

 </forager>

• FIRST_LAST_STEP_SCORE_IMPROVING: Pick the first accepted move that improves the last step

score. If none improve the last step score, it behaves exactly like the pickEarlyType NEVER.

 <forager>

 <pickEarlyType>FIRST_LAST_STEP_SCORE_IMPROVING</pickEarlyType>

Chapter 8. Local search solver

98

 </forager>

8.7. Best solution

Because the current solution can degrade (especially in tabu search and simulated annealing),

the Solver remembers the best solution it has encountered through the entire search path. Each

time the current solution is better than the last best solution, the current solution is cloned and

referenced as the new best solution.

You can listen to solver events, including when the best solution changes during solving, by adding

a SolverEventListener to the Solver:

public interface Solver {

 // ...

 void addEventListener(SolverEventListener eventListener);

 void removeEventListener(SolverEventListener eventListener);

}

8.8. Using a custom Selector, Acceptor, Forager or

Termination

It is easy to plug in a custom Selector, Acceptor, Forager or Termination by extending the

abstract class and also the config class.

For example, to use a custom Selector, extend the AbstractSelector

class (see AllMovesOfOneExamSelector), extend the SelectorConfig class (see

AllMovesOfOneExamSelectorConfig) and configure it in the configuration XML:

 <selector class="org.drools.planner.examples.examination.solver.selector.AllMovesOfOneExamSelectorConfig"/

>

If you build a better implementation that's not domain specific, consider adding it as a patch in our

issue tracker and we'll take it along in future refactors and optimize it.

Chapter 9.

99

Chapter 9. Evolutionary algorithms

9.1. Overview

Evolutionary algorithms work on a population of solutions and evolve that population.

9.2. Evolutionary Strategies

This algorithm has not been implemented yet.

9.3. Genetic algorithms

This algorithm has not been implemented yet.

100

Chapter 10.

101

Chapter 10. Benchmarking and

tweaking
10.1. Finding the best configuration

Drools Planner supports several solver types, but you're probably wondering which is the best

one? Although some solver types generally perform better then others, it really depends on your

problem domain. Most solver types also have settings which can be tweaked. Those settings can

influence the results of a solver a lot, although most settings perform pretty good out-of-the-box.

Luckily, Drools Planner includes a benchmarker, which allows you to play out different solver

types and different settings against each other, so you can pick the best configuration for your

problem domain.

10.2. Building a Benchmarker

10.2.1. Adding the exta dependency

The Benchmarker is current in the drools-planner-core modules, but it requires an extra

dependency on the JFreeChart [http://www.jfree.org/jfreechart/] library.

If you use maven, add a dependency in your pom.xml file:

 <dependency>

 <groupId>jfree</groupId>

 <artifactId>jfreechart</artifactId>

 <version>1.0.13</version>

 </dependency>

This is similar for gradle, ivy and buildr.

If you use ANT, you've probably already copied the required jars from the download zip's binaries

directory.

10.2.2. Building a basic Benchmarker

You can build a Benchmarker instance with theXmlSolverBenchmarker. Configure it with a

benchmarker configuration xml file:

 XmlSolverBenchmarker benchmarker = new XmlSolverBenchmarker();

 benchmarker.configure("/org/drools/planner/examples/nqueens/benchmark/

nqueensSolverBenchmarkConfig.xml");

 benchmarker.benchmark();

http://www.jfree.org/jfreechart/
http://www.jfree.org/jfreechart/

Chapter 10. Benchmarking and ...

102

 benchmarker.writeResults(resultFile);

A basic benchmarker configuration file looks something like this:

<?xml version="1.0" encoding="UTF-8"?>

<solverBenchmarkSuite>

 <benchmarkDirectory>local/data/nqueens</benchmarkDirectory>

 <solverStatisticType>BEST_SOLUTION_CHANGED</solverStatisticType>

 <warmUpSecondsSpend>30</warmUpSecondsSpend>

 <inheritedSolverBenchmark>

 <unsolvedSolutionFile>data/nqueens/unsolved/unsolvedNQueens32.xml</

unsolvedSolutionFile>

 <unsolvedSolutionFile>data/nqueens/unsolved/unsolvedNQueens64.xml</

unsolvedSolutionFile>

 <solver>

 <solutionClass>org.drools.planner.examples.nqueens.domain.NQueens</

solutionClass>

 <planningEntityClass>org.drools.planner.examples.nqueens.domain.Queen</

planningEntityClass>

 <scoreDrl>/org/drools/planner/examples/nqueens/solver/

nQueensScoreRules.drl</scoreDrl>

 <scoreDefinition>

 <scoreDefinitionType>SIMPLE</scoreDefinitionType>

 </scoreDefinition>

 <termination>

 <maximumSecondsSpend>20</maximumSecondsSpend>

 </termination>

 <constructionHeuristic>

 <constructionHeuristicType>FIRST_FIT_DECREASING</

constructionHeuristicType>

 <constructionHeuristicPickEarlyType>FIRST_LAST_STEP_SCORE_EQUAL_OR_IMPROVING</

constructionHeuristicPickEarlyType>

 </constructionHeuristic>

 </solver>

 </inheritedSolverBenchmark>

 <solverBenchmark>

 <name>Solution tabu</name>

 <solver>

 <localSearch>

 <selector>

 <moveFactoryClass>org.drools.planner.examples.nqueens.solver.move.factory.RowChangeMoveFactory</

moveFactoryClass>

 </selector>

Building a basic Benchmarker

103

 <acceptor>

 <solutionTabuSize>1000</solutionTabuSize>

 </acceptor>

 <forager>

 <pickEarlyType>NEVER</pickEarlyType>

 </forager>

 </localSearch>

 </solver>

 </solverBenchmark>

 <solverBenchmark>

 <name>Move tabu</name>

 <solver>

 <localSearch>

 <selector>

 <moveFactoryClass>org.drools.planner.examples.nqueens.solver.move.factory.RowChangeMoveFactory</

moveFactoryClass>

 </selector>

 <acceptor>

 <moveTabuSize>5</moveTabuSize>

 </acceptor>

 <forager>

 <pickEarlyType>NEVER</pickEarlyType>

 </forager>

 </localSearch>

 </solver>

 </solverBenchmark>

 <solverBenchmark>

 <name>Property tabu</name>

 <solver>

 <localSearch>

 <selector>

 <moveFactoryClass>org.drools.planner.examples.nqueens.solver.move.factory.RowChangeMoveFactory</

moveFactoryClass>

 </selector>

 <acceptor>

 <propertyTabuSize>5</propertyTabuSize>

 </acceptor>

 <forager>

 <pickEarlyType>NEVER</pickEarlyType>

 </forager>

 </localSearch>

 </solver>

 </solverBenchmark>

</solverBenchmarkSuite>

Chapter 10. Benchmarking and ...

104

This benchmarker will try 3 configurations (1 solution tabu, 1 move tabu and 1 property tabu) on

2 data sets (32 and 64 queens), so it will run 6 solvers.

Every solverBenchmark entity contains a solver configuration (for example a local search solver)

and one or more unsolvedSolutionFile entities. It will run the solver configuration on each of

those unsolved solution files. A name is optional and generated if absent.

The common part of multiple solverBenchmark entities can be extracted to the

inheritedSolverBenchmark entity, but that can still be overwritten per solverBenchmark entity.

Note that inherited solver phases such as <constructionHeuristic> or <localSearch> are not

overwritten but instead are added to the head of the solver phases list.

You need to specify a benchmarkDirectory (relative to the working directory). The best solution

of each solver run and a handy overview HTML webpage will be written in that directory.

10.2.3. Warming up the hotspot compiler

Without a warmup, the results of the first (or first few) benchmarks are not reliable, because they

will have lost CPU time on hotspot JIT compilation (and possibly DRL compilation too).

The avoid that distortion, the benchmarker can run some of the benchmarks for a specified amount

of time, before running the real benchmarks. Generally, a warm up of 30 seconds suffices:

<solverBenchmarkSuite>

 ...

 <warmUpSecondsSpend>30</warmUpSecondsSpend>

 ...

</solverBenchmarkSuite>

10.3. Summary statistics

10.3.1. Best score summary

A summary statistic of each solver run will be written in the benchmarkDirectory. Here is an

example of a summary statistic:

Best score summary

105

Figure 10.1. Summary statistic

Chapter 10. Benchmarking and ...

106

10.4. Statistics per data set (graph and CSV)

The benchmarker supports outputting statistics as graphs and CSV (comma separated values)

files to the benchmarkDirectory.

To configure graph and CSV output of a statistic, just add a solverStatisticType line:

<solverBenchmarkSuite>

 <benchmarkDirectory>local/data/nqueens/solved</benchmarkDirectory>

 <solverStatisticType>BEST_SOLUTION_CHANGED</solverStatisticType>

 ...

</solverBenchmarkSuite>

Multiple solverStatisticType entries are allowed. Some statistic types might influence

performance noticeably. The following types are are supported:

10.4.1. Best score over time statistic (graph and CSV)

To see how the best score evolves over time, add BEST_SOLUTION_CHANGED as a

solverStatisticType.

Best score over time statistic (graph and CSV)

107

Figure 10.2. Best score over time statistic

Chapter 10. Benchmarking and ...

108

Note

Don't be fooled by the simulated annealing line in this graph. If you give simulated

annealing only 5 minutes, it might still be better than 5 minutes of tabu search.

That's because this simulated annealing implementation automatically determines

it's velocity based on the amount of time that can be spend. On the other hand, for

the tabu search, what you see is what you'd get.

10.4.2. Calculate count per second statistic (graph and CSV)

To see how fast the scores are calculated, add CALCULATE_COUNT_PER_SECOND as a

solverStatisticType.

Calculate count per second statistic (graph and CSV)

109

Figure 10.3. Calculate count per second statistic

Chapter 10. Benchmarking and ...

110

Note

The initial high calculate count is typical during solution initialization. In this

example, it's far easier to calculate the score of a solution if only a handful exams

have been added, in contrast to all of them. After those few seconds of initialization,

the calculate count is relatively stable, apart from an occasional stop-the-world

garbage collector disruption.

10.4.3. Memory use statistic (graph and CSV)

To see how much memory is used, add MEMORY_USE as a solverStatisticType.

Memory use statistic (graph and CSV)

111

Figure 10.4. Memory use statistic

112

Chapter 11.

113

Chapter 11. Repeated planning
11.1. Introduction to repeated planning

The world constantly changes. The planning facts used to create a solution, might change before

or during the execution of that solution. There are 3 types of situations:

• Unforeseen fact changes: For example: an employee assigned to a shift calls in sick, an airplane

scheduled to take off has a technical delay, one of the machines or vehicles break down, ...

Use backup planning.

• Unknown long term future facts: For example: The hospital admissions for the next 2 weeks are

reliable, but those for week 3 and 4 are less reliable and for week 5 and beyond are not worth

planning yet. Use continuous planning.

• Constantly changing planning facts: Use real-time planning.

Waiting to start planning - to lower the risk of planning facts changing - usually isn't a good way

to deal with that. More CPU time means a better planning solution. An incomplete plan is better

then no plan.

Luckily, the Drools Planner algorithms support planning a solution that's already (partially)

planned, known as repeated planning.

11.2. Backup planning

Backup planning is the technique of adding extra score constraints to create space in the planning

for when things go wrong. That creates a backup plan in the plan. For example: try to assign an

employee as the spare employee (1 for every 10 shifts at the same time), keep 1 hospital bed

open in each department, ...

Then, when things go wrong (one of the employees calls in sick), change the planning facts on

the original solution (delete the sick employee leave his/her shifts unassigned) and just restart the

planning, starting from that solution, which has a different score now. The construction heuristics

will fill in the newly created gaps (probably with the spare employee) and the metaheuristics will

even improve it further.

11.3. Continuous planning (windowed planning)

Continuous planning is the technique of planning one or more upcoming planning windows at the

same time and repeating that process every week (or every day). Because time infinite, there are

an infinite future windows, so planning all future windows is impossible. Instead we plan only a

number of upcoming planning windows.

Past planning windows are immutable. The first upcoming planning window is considered stable

(unlikely to change), while later upcoming planning windows are considered draft (likely to change

during the next planning effort). Distant future planning windows are not planned at all.

Chapter 11. Repeated planning

114

Past planning windows have locked planning entities: the planning entities can no longer be

changed (they are locked in place), but some of them are still needed in the working memory, as

they might affect some of the score constraints that apply on the upcoming planning entities. For

example: when an employee should not work more than 5 days in a row, he shouldn't work today

and tomorrow if he worked the past 4 days already.

Sometimes some planning entities are semi-locked: they can be changed, but occur a certain

score penalty if they differ from their original place. For example: avoid rescheduling hospital beds

less than 2 days before the patient arrives (unless it's really worth it), avoid changing the airplane

gate (or worse, the terminal) during the 2 hours before boarding, ...

Figure 11.1. Continuous planning diagram

Real-time planning (event based planning)

115

Notice the difference between the original planning of November 1th and the new planning of

November 5th: some planning facts (F, H, I, J, K) changed, which results in unrelated planning

entities (G) changing too.

11.4. Real-time planning (event based planning)

To do real-time planning, first combine backup planning and continuous planning with short

planning windows to lower the burden of real-time planning. Don't configure any Termination,

just terminate early when you need the results or subscribe to the BestSolutionChangedEvent

(the latter doesn't guarantee yet that every ProblemFactChange has been processed already).

While the Solver is solving, an outside event might want to change one of the problem facts,

for example an airplane is delayed and needs the runway at a later time. Do not change the

problem fact instances used by the Solver while it is solving, as that will corrupt it. Instead, add

a ProblemFactChange to the Solver which it will execute as soon as the timing is right.

public interface Solver {

 ...

 boolean addProblemFactChange(ProblemFactChange problemFactChange);

 ...

}

public interface ProblemFactChange {

 void doChange(SolutionDirector solutionDirector);

}

Here's an example:

 public void deleteComputer(final CloudComputer cloudComputer) {

 solver.addProblemFactChange(new ProblemFactChange() {

 public void doChange(SolutionDirector solutionDirector) {

 CloudBalance cloudBalance = (CloudBalance)

 solutionDirector.getWorkingSolution();

 WorkingMemory workingMemory = solutionDirector.getWorkingMemory();

 // First remove the planning fact from all planning entities

 that use it

 for (CloudProcessAssignment cloudProcessAssignment :

 cloudBalance.getCloudProcessAssignmentList()) {

Chapter 11. Repeated planning

116

 if (ObjectUtils.equals(cloudProcessAssignment.getCloudComputer(),

 cloudComputer)) {

 FactHandle cloudProcessAssignmentHandle =

 workingMemory.getFactHandle(cloudProcessAssignment);

 cloudProcessAssignment.setCloudComputer(null);

 workingMemory.retract(cloudProcessAssignmentHandle);

 }

 }

 // Next remove it the planning fact itself

 for (Iterator<CloudComputer> it =

 cloudBalance.getCloudComputerList().iterator(); it.hasNext();) {

 CloudComputer workingCloudComputer = it.next();

 if (ObjectUtils.equals(workingCloudComputer, cloudComputer)) {

 FactHandle cloudComputerHandle =

 workingMemory.getFactHandle(workingCloudComputer);

 workingMemory.retract(cloudComputerHandle);

 it.remove(); // remove from list

 break;

 }

 }

 }

 });

 }

Warning

Any change on the problem facts or planning entities in a

ProblemFactChange must be done on the instances of the Solution of

solutionDirector.getWorkingSolution().

Warning

Any change on the problem facts or planning entities in a ProblemFactChange

must be told to the WorkingMemory of solutionDirector.getWorkingMemory().

Note

Many types of changes can leave a planning entity uninitialized, resulting in a

partially initialized solution. That's fine, as long as the first solver phase can handle

it. All construction heuristics solver phases can handle that, so it's recommended

to configure such a SolverPhase as the first phase.

Real-time planning (event based planning)

117

In essence, the Solver will stop, run the ProblemFactChange and restart. Each SolverPhase will

be run again. Each configured Termination (except terminateEarly) will reset.

118

119

Index

120

	Drools Planner User Guide
	Table of Contents
	
	Chapter 1. Planner introduction
	1.1. What is Drools Planner?
	1.2. What is a planning problem?
	1.2.1. A planning problem is NP-complete
	1.2.2. A planning problem has (hard and soft) constraints
	1.2.3. A planning problem has a huge search space

	1.3. Status of Drools Planner
	1.4. Get Drools Planner and run the examples
	1.4.1. Get the release zip and run the examples
	1.4.2. Run the examples in an IDE (IntelliJ, Eclipse, NetBeans)
	1.4.3. Get it with maven, gradle, ivy, buildr or ANT
	1.4.4. Build it from source

	1.5. Questions, issues and blog

	Chapter 2. Use cases and examples
	2.1. Introduction
	2.2. N queens example
	2.2.1. Problem statement
	2.2.2. Solution(s)
	2.2.3. Screenshot
	2.2.4. Problem size
	2.2.5. Domain model

	2.3. Cloud balancing example
	2.3.1. Problem statement
	2.3.2. Domain model

	2.4. Machine reassignment example (ROADEF 2012)
	2.4.1. Problem statement
	2.4.2. Problem size

	2.5. Manners 2009 example
	2.5.1. Problem statement

	2.6. Traveling Salesman Problem example (TSP)
	2.6.1. Problem statement

	2.7. Traveling Tournament Problem example (TTP)
	2.7.1. Problem statement
	2.7.2. Simple and smart implementation
	2.7.3. Problem size

	2.8. Curriculum course scheduling example (ITC 2007 track 3)
	2.8.1. Problem statement

	2.9. Examination timetabling example (ITC 2007 track 1)
	2.9.1. Problem statement
	2.9.2. Problem size
	2.9.3. Domain model

	2.10. Patient admission scheduling (hospital bed planning) example (PAS)
	2.10.1. Problem statement

	2.11. Nurse rostering example (INRC 2010)
	2.11.1. Problem statement

	Chapter 3. Planner configuration
	3.1. Overview
	3.2. Solver configuration
	3.2.1. Solver configuration by XML file
	3.2.2. Solver configuration by Java API

	3.3. Model your planning problem
	3.3.1. Is this class a problem fact or planning entity?
	3.3.2. Problem fact
	3.3.3. Planning entity and planning variables
	3.3.3.1. Planning entity
	3.3.3.2. Planning entity difficulty
	3.3.3.3. Planning variable
	3.3.3.4. When is a planning entity initialized?

	3.3.4. Planning value and planning value ranges
	3.3.4.1. Planning value
	3.3.4.2. Planning value range
	3.3.4.2.1. ValueRangeFromSolutionProperty
	3.3.4.2.2. ValueRangeFromPlanningEntityProperty
	3.3.4.2.3. ValueRangeUndefined

	3.3.4.3. Planning value strength

	3.3.5. Planning problem and planning solution
	3.3.5.1. Planning problem instance
	3.3.5.2. The Solution interface
	3.3.5.3. The getScore and setScore methods
	3.3.5.4. The getProblemFacts method
	3.3.5.5. Cached problem fact
	3.3.5.6. The cloneSolution method
	3.3.5.7. Build an uninitialized solution

	3.4. Solver
	3.4.1. The Solver interface
	3.4.2. Solving a problem
	3.4.3. Environment mode: Are there bugs in my code?
	3.4.3.1. TRACE
	3.4.3.2. DEBUG
	3.4.3.3. REPRODUCIBLE (default)
	3.4.3.4. PRODUCTION

	3.4.4. Logging level: What is the Solver doing?

	Chapter 4. Score calculation with a rule engine
	4.1. Rule based score calculation
	4.2. Choosing a Score implementation
	4.2.1. The ScoreDefinition interface
	4.2.2. SimpleScore
	4.2.3. HardAndSoftScore
	4.2.4. Implementing a custom Score

	4.3. Defining the score rules source
	4.3.1. A scoreDrl resource on the classpath
	4.3.2. A RuleBase (possibly defined by Guvnor)

	4.4. Implementing a score rule
	4.5. Aggregating the score rules into the Score
	4.6. Delta based score calculation
	4.7. Tips and tricks

	Chapter 5. Optimization algorithms
	5.1. The size of real world problems
	5.2. The secret sauce of Drools Planner
	5.3. Optimization algorithms overview
	5.4. Which optimization algorithms should I use?
	5.5. SolverPhase
	5.6. Termination
	5.6.1. TimeMillisSpendTermination
	5.6.2. ScoreAttainedTermination
	5.6.3. StepCountTermination
	5.6.4. UnimprovedStepCountTermination
	5.6.5. Combining Terminations
	5.6.6. Asynchronous termination from another thread

	5.7. Custom SolverPhase

	Chapter 6. Exact methods
	6.1. Overview
	6.2. Brute Force
	6.2.1. Algorithm description
	6.2.2. Configuration

	6.3. Branch and bound
	6.3.1. Algorithm description
	6.3.2. Configuration

	Chapter 7. Construction heuristics
	7.1. Overview
	7.2. First Fit
	7.2.1. Algorithm description
	7.2.2. Configuration

	7.3. First Fit Decreasing
	7.3.1. Algorithm description
	7.3.2. Configuration

	7.4. Best Fit
	7.4.1. Algorithm description
	7.4.2. Configuration

	7.5. Best Fit Decreasing
	7.5.1. Algorithm description
	7.5.2. Configuration

	7.6. Cheapest insertion
	7.6.1. Algorithm description
	7.6.2. Configuration

	Chapter 8. Local search solver
	8.1. Overview
	8.2. Hill climbing (simple local search)
	8.2.1. Algorithm description

	8.3. Tabu search
	8.3.1. Algorithm description

	8.4. Simulated annealing
	8.4.1. Algorithm description

	8.5. About neighborhoods, moves and steps
	8.5.1. A move
	8.5.2. Move generation
	8.5.3. A step
	8.5.4. Getting stuck in local optima

	8.6. Deciding the next step
	8.6.1. Selector
	8.6.2. Acceptor
	8.6.2.1. Tabu search acceptor
	8.6.2.2. Simulated annealing acceptor

	8.6.3. Forager
	8.6.3.1. Subset selection
	8.6.3.2. Pick early type

	8.7. Best solution
	8.8. Using a custom Selector, Acceptor, Forager or Termination

	Chapter 9. Evolutionary algorithms
	9.1. Overview
	9.2. Evolutionary Strategies
	9.3. Genetic algorithms

	Chapter 10. Benchmarking and tweaking
	10.1. Finding the best configuration
	10.2. Building a Benchmarker
	10.2.1. Adding the exta dependency
	10.2.2. Building a basic Benchmarker
	10.2.3. Warming up the hotspot compiler

	10.3. Summary statistics
	10.3.1. Best score summary

	10.4. Statistics per data set (graph and CSV)
	10.4.1. Best score over time statistic (graph and CSV)
	10.4.2. Calculate count per second statistic (graph and CSV)
	10.4.3. Memory use statistic (graph and CSV)

	Chapter 11. Repeated planning
	11.1. Introduction to repeated planning
	11.2. Backup planning
	11.3. Continuous planning (windowed planning)
	11.4. Real-time planning (event based planning)

	Index

