
Welcome
1. Introduction
1.1. Introduction
KIE (Knowledge Is Everything) is an umbrella project introduced to bring our related technologies together under one roof. It also acts as the core shared between our projects.
KIE contains the following different but related projects offering a complete portfolio of solutions for business automation and management:
-
Drools is a business-rule management system with a forward-chaining and backward-chaining inference-based rules engine, allowing fast and reliable evaluation of business rules and complex event processing. A rules engine is also a fundamental building block to create an expert system which, in artificial intelligence, is a computer system that emulates the decision-making ability of a human expert.
-
jBPM is a flexible Business Process Management suite allowing you to model your business goals by describing the steps that need to be executed to achieve those goals.
-
OptaPlanner is a constraint solver that optimizes use cases such as employee rostering, vehicle routing, task assignment and cloud optimization.
-
Business Central is a full featured web application for the visual composition of custom business rules and processes.
-
UberFire is a web-based workbench framework inspired by Eclipse Rich Client Platform.
The 7.x series will follow a more agile approach with more regular and iterative releases. We plan to do some bigger changes than normal for a series of minor releases, and users need to be aware those are coming before adopting.
-
UI sections and links will become object oriented, rather than task oriented. https://en.wikipedia.org/wiki/Object-oriented_user_interface
-
Authoring/Library will become project oriented, rather than repository oriented. You’ll create, browse and open projects rather than repositories. The repository concept will be pushed lower, for instance it’ll be created automatically when you create the project.
-
The old form modeller will be removed and only the new one made available. Although old forms will continue to render.
-
The new designer will continue to mature with more nodes and improved UXD. Eventually it’ll become the default editor, but we will not remove the old one until there is feature parity in BPMN2 support.
-
Continued UXD improvements in lots of places.
-
We will introduce the AppFormer project, this will be a re-org and consolidation of existing projects and result in some artifact renames. UberFire will become AppFormer-Core, forms, data modeller and dashbuilder will come under AppFormer. Dashbuilder will most likely be called Appformer-Insight.
The 8.x series will come towards the end of this year. We have ongoing parallel work to introduce concepts of workspaces with improved git support, that will have a built in workflow for forking and pull requests. This will be combined with horizontal scaling and improved high availability. These changes are important for usability and cloud scalability, but too much of a change for a minor release, hence the bump to 8.x
1.2. Getting Involved
We are often asked "How do I get involved". Luckily the answer is simple, just write some code and submit it :) There are no hoops you have to jump through or secret handshakes. We have a very minimal "overhead" that we do request to allow for scalable project development. Below we provide a general overview of the tools and "workflow" we request, along with some general advice.
If you contribute some good work, don’t forget to blog about it :)
1.2.1. Sign up to jboss.org
Signing to jboss.org will give you access to the JBoss wiki, forums and JIRA. Go to https://www.jboss.org/ and click "Register".

1.2.2. Sign the Contributor Agreement
The only form you need to sign is the contributor agreement, which is fully automated via the web. As the image below says "This establishes the terms and conditions for your contributions and ensures that source code can be licensed appropriately"

1.2.3. Submitting issues via JIRA
To be able to interact with the core development team you will need to use JIRA, the issue tracker. This ensures that all requests are logged and allocated to a release schedule and all discussions captured in one place. Bug reports, bug fixes, feature requests and feature submissions should all go here. General questions should be undertaken at the mailing lists.
Minor code submissions, like format or documentation fixes do not need an associated JIRA issue created.

1.2.4. Fork GitHub
With the contributor agreement signed and your requests submitted to JIRA you should now be ready to code :) Create a GitHub account and fork any of the Drools, jBPM or Guvnor repositories. The fork will create a copy in your own GitHub space which you can work on at your own pace. If you make a mistake, don’t worry blow it away and fork again. Note each GitHub repository provides you the clone (checkout) URL, GitHub will provide you URLs specific to your fork.

1.2.5. Writing Tests
When writing tests, try and keep them minimal and self contained. We prefer to keep the DRL fragments within the test, as it makes for quicker reviewing. If there are a large number of rules then using a String is not practical so then by all means place them in separate DRL files instead to be loaded from the classpath. If your tests need to use a model, please try to use those that already exist for other unit tests; such as Person, Cheese or Order. If no classes exist that have the fields you need, try and update fields of existing classes before adding a new class.
There are a vast number of tests to look over to get an idea, MiscTest is a good place to start.

1.2.6. Commit with Correct Conventions
When you commit, make sure you use the correct conventions. The commit must start with the JIRA issue id, such as DROOLS-1946. This ensures the commits are cross referenced via JIRA, so we can see all commits for a given issue in the same place. After the id the title of the issue should come next. Then use a newline, indented with a dash, to provide additional information related to this commit. Use an additional new line and dash for each separate point you wish to make. You may add additional JIRA cross references to the same commit, if it’s appropriate. In general try to avoid combining unrelated issues in the same commit.
Don’t forget to rebase your local fork from the primary branch and then push your commits back to your fork.

1.2.7. Submit Pull Requests
With your code rebased from primary branch and pushed to your personal GitHub area, you can now submit your work as a pull request. If you look at the top of the page in GitHub for your work area there will be a "Pull Request" button. Selecting this will then provide a gui to automate the submission of your pull request.
The pull request then goes into a queue for everyone to see and comment on. Below you can see a typical pull request. The pull requests allow for discussions and it shows all associated commits and the diffs for each commit. The discussions typically involve code reviews which provide helpful suggestions for improvements, and allows for us to leave inline comments on specific parts of the code. Don’t be disheartened if we don’t merge straight away, it can often take several revisions before we accept a pull request. Luckily GitHub makes it very trivial to go back to your code, do some more commits and then update your pull request to your latest and greatest.
It can take time for us to get round to responding to pull requests, so please be patient. Submitted tests that come with a fix will generally be applied quite quickly, where as just tests will often way until we get time to also submit that with a fix. Don’t forget to rebase and resubmit your request from time to time, otherwise over time it will have merge conflicts and core developers will general ignore those.

1.3. Installation and Setup (Core and IDE)
1.3.1. Installing and using
Drools engine provides an Eclipse-based IDE, which is optional. However, the Eclipse-based IDE will be deprecated in a future release.
The latest working version of the Eclipse-based IDE is 7.46.0.Final and can be used with the recent versions of Drools.
A simple way to get started is to download and install the Eclipse plug-in - this will also require the Eclipse GEF framework to be installed (see below, if you don’t have it installed already). This will provide you with all the dependencies you need to get going: you can simply create a new rule project and everything will be done for you. Refer to the chapter on Business Central and IDE for detailed instructions on this. Installing the Eclipse plug-in is generally as simple as unzipping a file into your Eclipse plug-in directory.
Use of the Eclipse plug-in is not required. Rule files are just textual input (or spreadsheets as the case may be) and the IDE (also known as Business Central) is just a convenience. People have integrated the Drools engine in many ways, there is no "one size fits all".
Alternatively, you can download the binary distribution, and include the relevant JARs in your projects classpath.
1.3.1.1. Dependencies and JARs
Drools is broken down into a few modules, some are required during rule development/compiling, and some are required at runtime. In many cases, people will simply want to include all the dependencies at runtime, and this is fine. It allows you to have the most flexibility. However, some may prefer to have their "runtime" stripped down to the bare minimum, as they will be deploying rules in binary form - this is also possible. The core Drools engine can be quite compact, and only requires a few 100 kilobytes across 3 JAR files.
The following is a description of the important libraries that make up JBoss Drools
-
knowledge-api.jar - this provides the interfaces and factories. It also helps clearly show what is intended as a user API and what is just an engine API.
-
knowledge-internal-api.jar - this provides internal interfaces and factories.
-
drools-core.jar - this is the core Drools engine, runtime component. Contains both the RETE engine and the LEAPS engine. This is the only runtime dependency if you are pre-compiling rules (and deploying via Package or RuleBase objects).
-
drools-compiler.jar - this contains the compiler/builder components to take rule source, and build executable rule bases. This is often a runtime dependency of your application, but it need not be if you are pre-compiling your rules. This depends on drools-core.
-
drools-jsr94.jar - this is the JSR-94 compliant implementation, this is essentially a layer over the drools-compiler component. Note that due to the nature of the JSR-94 specification, not all features are easily exposed via this interface. In some cases, it will be easier to go direct to the Drools API, but in some environments the JSR-94 is mandated.
-
drools-decisiontables.jar - this is the decision tables 'compiler' component, which uses the drools-compiler component. This supports both excel and CSV input formats.
There are quite a few other dependencies which the above components require, most of which are for the drools-compiler, drools-jsr94 or drools-decisiontables module. Some key ones to note are "POI" which provides the spreadsheet parsing ability, and "antlr" which provides the parsing for the rule language itself.
if you are using Drools in J2EE or servlet containers and you come across classpath issues with "JDT", then you can switch to the janino compiler. Set the system property "drools.compiler": For example: -Ddrools.compiler=JANINO. |
For up to date info on dependencies in a release, consult the released POMs, which can be found on the Maven repository.
1.3.1.2. Use with Maven, Gradle, Ivy, Buildr or Ant
The JARs are also available in the central Maven repository (and also in https://repository.jboss.org/nexus/index.html#nexus-search;gavorg.drools~[the JBoss Maven repository]).
If you use Maven, add KIE and Drools dependencies in your project’s pom.xml like this:
<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.drools</groupId>
<artifactId>drools-bom</artifactId>
<type>pom</type>
<version>...</version>
<scope>import</scope>
</dependency>
...
</dependencies>
</dependencyManagement>
<dependencies>
<dependency>
<groupId>org.kie</groupId>
<artifactId>kie-api</artifactId>
</dependency>
<dependency>
<groupId>org.drools</groupId>
<artifactId>drools-compiler</artifactId>
<scope>runtime</scope>
</dependency>
...
<dependencies>
This is similar for Gradle, Ivy and Buildr. To identify the latest version, check the Maven repository.
If you’re still using Ant (without Ivy), copy all the JARs from the download zip’s binaries directory and manually verify that your classpath doesn’t contain duplicate JARs.
1.3.1.3. Runtime
The "runtime" requirements mentioned here are if you are deploying rules as their binary form (either as KnowledgePackage objects, or KnowledgeBase objects etc). This is an optional feature that allows you to keep your runtime very light. You may use drools-compiler to produce rule packages "out of process", and then deploy them to a runtime system. This runtime system only requires drools-core.jar and knowledge-api for execution. This is an optional deployment pattern, and many people do not need to "trim" their application this much, but it is an ideal option for certain environments.
1.3.1.4. Installing IDE (Rule Workbench)
The rule workbench (for Eclipse) requires that you have Eclipse 3.4 or greater, as well as Eclipse GEF 3.4 or greater. You can install it either by downloading the plug-in or using the update site.
Another option is to use the JBoss IDE, which comes with all the plug-in requirements pre packaged, as well as a choice of other tools separate to rules. You can choose just to install rules from the "bundle" that JBoss IDE ships with.
Installing GEF (a required dependency)
GEF is the Eclipse Graphical Editing Framework, which is used for graph viewing components in the plug-in.
If you don’t have GEF installed, you can install it using the built in update mechanism (or downloading GEF from the Eclipse.org website not recommended). JBoss IDE has GEF already, as do many other "distributions" of Eclipse, so this step may be redundant for some people.
Open the Help→Software updates…→Available Software→Add Site… from the help menu. Location is:
http://download.eclipse.org/tools/gef/updates/releases/
Next you choose the GEF plug-in:

Press next, and agree to install the plug-in (an Eclipse restart may be required). Once this is completed, then you can continue on installing the rules plug-in.
Installing GEF from zip file
To install from the zip file, download and unzip the file. Inside the zip you will see a plug-in directory, and the plug-in JAR itself. You place the plug-in JAR into your Eclipse applications plug-in directory, and restart Eclipse.
Installing Drools plug-in from zip file
Download the Drools Eclipse IDE plugin from the link below. Unzip the downloaded file in your main eclipse folder (do not just copy the file there, extract it so that the feature and plugin JARs end up in the features and plugin directory of eclipse) and (re)start Eclipse.
To check that the installation was successful, try opening the Drools perspective: Click the 'Open Perspective' button in the top right corner of your Eclipse window, select 'Other…' and pick the Drools perspective. If you cannot find the Drools perspective as one of the possible perspectives, the installation probably was unsuccessful. Check whether you executed each of the required steps correctly: Do you have the right version of Eclipse (3.4.x)? Do you have Eclipse GEF installed (check whether the org.eclipse.gef_3.4..jar exists in the plugins directory in your eclipse root folder)? Did you extract the Drools Eclipse plugin correctly (check whether the org.drools.eclipse_.jar exists in the plugins directory in your eclipse root folder)? If you cannot find the problem, try contacting us (e.g. on irc or on the user mailing list), more info can be found no our homepage here:
Drools Runtimes
A Drools runtime is a collection of JARs on your file system that represent one specific release of the Drools project JARs. To create a runtime, you must point the IDE to the release of your choice. If you want to create a new runtime based on the latest Drools project JARs included in the plugin itself, you can also easily do that. You are required to specify a default Drools runtime for your Eclipse workspace, but each individual project can override the default and select the appropriate runtime for that project specifically.
You are required to define one or more Drools runtimes using the Eclipse preferences view. To open up your preferences, in the menu Window select the Preferences menu item. A new preferences dialog should show all your preferences. On the left side of this dialog, under the Drools category, select "Installed Drools runtimes". The panel on the right should then show the currently defined Drools runtimes. If you have not yet defined any runtimes, it should like something like the figure below.

To define a new Drools runtime, click the add button. A dialog as shown below should pop up, requiring the name for your runtime and the location on your file system where it can be found.

In general, you have two options:
-
If you simply want to use the default JARs as included in the Drools Eclipse plugin, you can create a new Drools runtime automatically by clicking the "Create a new Drools 5 runtime …" button. A file browser will show up, asking you to select the folder on your file system where you want this runtime to be created. The plugin will then automatically copy all required dependencies to the specified folder. After selecting this folder, the dialog should look like the figure shown below.
-
If you want to use one specific release of the Drools project, you should create a folder on your file system that contains all the necessary Drools libraries and dependencies. Instead of creating a new Drools runtime as explained above, give your runtime a name and select the location of this folder containing all the required JARs.

After clicking the OK button, the runtime should show up in your table of installed Drools runtimes, as shown below. Click checkbox in front of the newly created runtime to make it the default Drools runtime. The default Drools runtime will be used as the runtime of all your Drools project that have not selected a project-specific runtime.

You can add as many Drools runtimes as you need. For example, the screenshot below shows a configuration where three runtimes have been defined: a Drools 4.0.7 runtime, a Drools 5.0.0 runtime and a Drools 5.0.0.SNAPSHOT runtime. The Drools 5.0.0 runtime is selected as the default one.

Note that you will need to restart Eclipse if you changed the default runtime and you want to make sure that all the projects that are using the default runtime update their classpath accordingly.
Whenever you create a Drools project (using the New Drools Project wizard or by converting an existing Java project to a Drools project using the "Convert to Drools Project" action that is shown when you are in the Drools perspective and you right-click an existing Java project), the plugin will automatically add all the required JARs to the classpath of your project.
When creating a new Drools project, the plugin will automatically use the default Drools runtime for that project, unless you specify a project-specific one. You can do this in the final step of the New Drools Project wizard, as shown below, by deselecting the "Use default Drools runtime" checkbox and selecting the appropriate runtime in the drop-down box. If you click the "Configure workspace settings …" link, the workspace preferences showing the currently installed Drools runtimes will be opened, so you can add new runtimes there.

You can change the runtime of a Drools project at any time by opening the project properties (right-click the project and select Properties) and selecting the Drools category, as shown below. Check the "Enable project specific settings" checkbox and select the appropriate runtime from the drop-down box. If you click the "Configure workspace settings …" link, the workspace preferences showing the currently installed Drools runtimes will be opened, so you can add new runtimes there. If you deselect the "Enable project specific settings" checkbox, it will use the default runtime as defined in your global preferences.

1.3.2. Building from source
1.3.2.1. Getting the sources
The source code of each Maven artifact is available in the JBoss Maven repository as a source JAR. The same source JARs are also included in the download zips. However, if you want to build from source, it’s highly recommended to get our sources from our source control.
Git allows you to fork our code, independently make personal changes on it, yet still merge in our latest changes regularly and optionally share your changes with us. To learn more about git, read the free book Git Pro.
1.3.2.2. Building the sources
In essence, building from source is very easy, for example if you want to build the guvnor project:
$ git clone git@github.com:kiegroup/guvnor.git
...
$ cd guvnor
$ mvn clean install -DskipTests -Dfull
...
However, there are a lot potential pitfalls, so if you’re serious about building from source and possibly contributing to the project, follow the instructions in the README file in droolsjbpm-build-bootstrap.
1.3.3. Eclipse
1.3.3.1. Importing Eclipse Projects
With the Eclipse project files generated they can now be imported into Eclipse. When starting Eclipse open the workspace in the root of your subversion checkout.




When calling mvn install
all the project dependencies were downloaded and added to the local Maven repository.
Eclipse cannot find those dependencies unless you tell it where that repository is.
To do this setup an M2_REPO
classpath variable.




Getting started
2. Getting started with decision services in Drools
As a business rules developer, you can use Business Central in Drools to design a variety of decision services. Drools provides example projects with example business assets directly in Business Central as a reference. This document describes how to create and test an example traffic violation project based on the Traffic_Violation sample project included in Business Central. This sample project uses a Decision Model and Notation (DMN) model to define driver penalty and suspension rules in a traffic violation decision service. You can follow the steps in this document to create the project and the assets it contains, or open and review the existing Traffic_Violation sample project.
For more information about the DMN components and implementation in Drools, see Designing a decision service using DMN models.
-
Red Hat JBoss Enterprise Application Platform 7.4 is installed. For installation information, see Red Hat JBoss Enterprise Application Platform 7.4 Installation Guide.
-
Red Hat Process Automation Manager is installed and configured with KIE Server. For more information see Installing and configuring Drools on Red Hat JBoss EAP 7.4.
-
Drools is running and you can log in to Business Central with the
developer
role. For more information, see Planning a Drools installation.
2.1. Sample projects and business assets in Business Central
Business Central contains sample projects with business assets that you can use as a reference for the rules or other assets that you create in your own Drools projects. Each sample project is designed differently to demonstrate decision management or business optimization assets and logic in Drools.
Red Hat does not provide support for the sample code included in the Drools distribution. |
The following sample projects are available in Business Central:
-
Course_Scheduling: (Business optimization) Course scheduling and curriculum decision process. Assigns lectures to rooms and determines a student’s curriculum based on factors such as course conflicts and class room capacity.
-
Dinner_Party: (Business optimization) Guest seating optimization using guided decision tables. Assigns guest seating based on each guest’s job type, political beliefs, and known relationships.
-
Employee_Rostering: (Business optimization) Employee rostering optimization using decision and solver assets. Assigns employees to shifts based on skills.
-
Evaluation_Process: (Process automation) Evaluation process using business process assets. Evaluates employees based on performance.
-
IT_Orders: (Process automation and case management) Ordering case using business process and case management assets. Places an IT hardware order based on needs and approvals.
-
Mortgages: (Decision management with rules) Loan approval process using rule-based decision assets. Determines loan eligibility based on applicant data and qualifications.
-
Mortgage_Process: (Process automation) Loan approval process using business process and decision assets. Determines loan eligibility based on applicant data and qualifications.
-
OptaCloud: (Business optimization) Resource allocation optimization using decision and solver assets. Assigns processes to computers with limited resources.
-
Traffic_Violation: (Decision management with DMN) Traffic violation decision service using a Decision Model and Notation (DMN) model. Determines driver penalty and suspension based on traffic violations.
2.1.1. Accessing sample projects and business assets in Business Central
You can use the sample projects in Business Central to explore business assets as a reference for the rules or other assets that you create in your own Drools projects.
-
Business Central is installed and running. For installation options, see Planning a Drools installation.
-
In Business Central, go to Menu → Design → Projects. If there are existing projects, you can access the samples by clicking the MySpace default space and selecting Try Samples from the Add Project drop-down menu. If there are no existing projects, click Try samples.
-
Review the descriptions for each sample project to determine which project you want to explore. Each sample project is designed differently to demonstrate decision management or business optimization assets and logic in Drools.
-
Select one or more sample projects and click Ok to add the projects to your space.
-
In the Projects page of your space, select one of the sample projects to view the assets for that project.
-
Select each asset to explore how the project is designed to achieve the specified goal or workflow. Some of the sample projects contain more than one page of assets. Click the left or right arrows in the upper-right corner to view the full asset list.
Figure 1. Asset page selection -
In the upper-right corner of the project Assets page, click Build to build the sample project or Deploy to build the project and then deploy it to KIE Server.
You can also select the Build & Install option to build the project and publish the KJAR file to the configured Maven repository without deploying to a KIE Server. In a development environment, you can click Deploy to deploy the built KJAR file to a KIE Server without stopping any running instances (if applicable), or click Redeploy to deploy the built KJAR file and replace all instances. The next time you deploy or redeploy the built KJAR, the previous deployment unit (KIE container) is automatically updated in the same target KIE Server. In a production environment, the Redeploy option is disabled and you can click Deploy only to deploy the built KJAR file to a new deployment unit (KIE container) on a KIE Server.
To configure the KIE Server environment mode, set the
org.kie.server.mode
system property toorg.kie.server.mode=development
ororg.kie.server.mode=production
. To configure the deployment behavior for a corresponding project in Business Central, go to project Settings → General Settings → Version, toggle the Development Mode option, and click Save. By default, KIE Server and all new projects in Business Central are in development mode. You cannot deploy a project with Development Mode turned on or with a manually addedSNAPSHOT
version suffix to a KIE Server that is in production mode.To review project deployment details, click View deployment details in the deployment banner at the top of the screen or in the Deploy drop-down menu. This option directs you to the Menu → Deploy → Execution Servers page.
2.2. Creating the traffic violations project in Business Central
For this example, create a new project called traffic-violation
. A project is a container for assets such as data objects, DMN assets, and test scenarios. This example project that you are creating is similar to the existing Traffic_Violation sample project in Business Central.
-
In Business Central, go to Menu → Design → Projects.
Drools provides a default space called MySpace. You can use the default space to create and test example projects.
-
Click Add Project.
-
Enter
traffic-violation
in the Name field. -
Click Add.
Figure 2. Add Project windowThe Assets view of the project opens.
2.3. Decision Model and Notation (DMN)
Decision Model and Notation (DMN) is a standard established by the Object Management Group (OMG) for describing and modeling operational decisions. DMN defines an XML schema that enables DMN models to be shared between DMN-compliant platforms and across organizations so that business analysts and business rules developers can collaborate in designing and implementing DMN decision services. The DMN standard is similar to and can be used together with the Business Process Model and Notation (BPMN) standard for designing and modeling business processes.
For more information about the background and applications of DMN, see the OMG Decision Model and Notation specification.
2.3.1. Creating the traffic violations DMN decision requirements diagram (DRD)
A decision requirements diagram (DRD) is a visual representation of your DMN model. Use the DMN designer in Business Central to design the DRD for the traffic violations project and to define the decision logic of the DRD components.

-
You have created the traffic violations project in Business Central.
-
On the traffic-violation project’s home page, click Add Asset.
-
On the Add Asset page, click DMN. The Create new DMN window is opened.
-
In the Create new DMN window, enter
Traffic Violation
in the DMN name field. -
From the Package list, select
com.myspace.traffic_violation
. -
Click Ok. The DMN asset in the DMN designer is opened.
-
-
In the DMN designer canvas, drag two DMN Input Data input nodes onto the canvas.
Figure 4. DMN Input Data nodes -
In the upper-right corner, click the
icon.
-
Double-click the input nodes and rename one to
Driver
and the other toViolation
. -
Drag a DMN Decision decision node onto the canvas.
-
Double-click the decision node and rename it to
Fine
. -
Click the Violation input node, select the Create DMN Information Requirement icon and click the
Fine
decision node to link the two nodes.Figure 5. Create DMN Information Requirement icon -
Drag a DMN Decision decision node onto the canvas.
-
Double-click the decision node and rename it to
Should the driver be suspended?
. -
Click the Driver input node, select the Create DMN Information Requirement icon and click the Should the driver be suspended? decision node to link the two nodes.
-
Click the Fine decision node, select the Create DMN Information Requirement icon, and select the Should the driver be suspended? decision node.
-
Click Save.
As you periodically save a DRD, the DMN designer performs a static validation of the DMN model and might produce error messages until the model is defined completely. After you finish defining the DMN model completely, if any errors remain, troubleshoot the specified problems accordingly.
2.3.2. Creating the traffic violations DMN custom data types
DMN data types determine the structure of the data that you use within a table, column, or field in a DMN boxed expression for defining decision logic. You can use default DMN data types (such as string, number, or boolean) or you can create custom data types to specify additional fields and constraints that you want to implement for the boxed expression values. Use the DMN designer’s Data Types tab in Business Central to define the custom data types for the traffic violations project.

The following tables list the tDriver
, tViolation
, and tFine
custom data types that you will create for this project.
Name | Type |
---|---|
tDriver |
Structure |
Name |
string |
Age |
number |
State |
string |
City |
string |
Points |
number |
Name | Type |
---|---|
tViolation |
Structure |
Code |
string |
Date |
date |
Type |
string |
Speed Limit |
number |
Actual Speed |
number |
Name | Type |
---|---|
tFine |
Structure |
Amount |
number |
Points |
number |
-
You created the traffic violations DMN decision requirements diagram (DRDs) in Business Central.
-
To create the
tDriver
custom data type, click Add a custom Data Type on the Data Types tab, entertDriver
in the Name field, and selectStructure
from the Type list. -
Click the check mark to the right of the new data type to save your changes.
Figure 7. The tDriver custom data type -
Add each of the following nested data types to the
tDriver
structured data type by clicking the plus sign next totDriver
for each new nested data type. Click the check mark to the right of each new data type to save your changes.-
Name
(string) -
Age
(number) -
State
(string) -
City
(string) -
Points
(number)
-
-
To create the
tViolation
custom data type, click New Data Type, entertViolation
in the Name field, and selectStructure
from the Type list. -
Click the check mark to the right of the new data type to save your changes.
Figure 8. The tViolation custom data type -
Add each of the following nested data types to the
tViolation
structured data type by clicking the plus sign next totViolation
for each new nested data type. Click the check mark to the right of each new data type to save your changes.-
Code
(string) -
Date
(date) -
Type
(string) -
Speed Limit
(number) -
Actual Speed
(number)
-
-
To add the following constraints to the
Type
nested data type, click the edit icon, click Add Constraints, and select Enumeration from the Select constraint type drop-down menu.-
speed
-
parking
-
driving under the influence
-
-
Click OK, then click the check mark to the right of the Type data type to save your changes.
-
To create the
tFine
custom data type, click New Data Type, entertFine
in the Name field, selectStructure
from the Type list, and click Save.Figure 9. The tFine custom data type -
Add each of the following nested data types to the
tFine
structured data type by clicking the plus sign next totFine
for each new nested data type. Click the check mark to the right of each new data type to save your changes.-
Amount
(number) -
Points
(number)
-
-
Click Save.
2.3.3. Assigning custom data types to the DRD input and decision nodes
After you create the DMN custom data types, assign them to the appropriate DMN Input Data and DMN Decision nodes in the traffic violations DRD.
-
You have created the traffic violations DMN custom data types in Business Central.
-
Click the Model tab on the DMN designer and click the Properties
icon in the upper-right corner of the DMN designer to expose the DRD properties.
-
In the DRD, select the Driver input data node and in the Properties panel, select
tDriver
from the Data type drop-down menu. -
Select the Violation input data node and select
tViolation
from the Data type drop-down menu. -
Select the Fine decision node and select
tFine
from the Data type drop-down menu. -
Select the Should the driver be suspended? decision node and set the following properties:
-
Data type:
string
-
Question:
Should the driver be suspended due to points on his driver license?
-
Allowed Answers:
Yes,No
-
-
Click Save.
You have assigned the custom data types to your DRD’s input and decision nodes.
2.3.4. Defining the traffic violations DMN decision logic
To calculate the fine and to decide whether the driver is to be suspended or not, you can define the traffic violations DMN decision logic using a DMN decision table and context boxed expression.


-
You have assigned the DMN custom data types to the appropriate decision and input nodes in the traffic violations DRD in Business Central.
-
To calculate the fine, in the DMN designer canvas, select the Fine decision node and click the Edit icon to open the DMN boxed expression designer.
Figure 12. Decision node edit icon -
Click Select expression → Decision Table.
Figure 13. Select Decisiong Table logic type -
For the Violation.Date, Violation.Code, and Violation.Speed Limit columns, right-click and select Delete for each field.
-
Click the Violation.Actual Speed column header and enter the expression
Violation.Actual Speed - Violation.Speed Limit
in the Expression field." -
Enter the following values in the first row of the decision table:
-
Violation.Type:
"speed"
-
Violation.Actual Speed - Violation.Speed Limit:
[10..30)
-
Amount:
500
-
Points:
3
Right-click the first row and select
Insert below
to add another row.
-
-
Enter the following values in the second row of the decision table:
-
Violation.Type:
"speed"
-
Violation.Actual Speed - Violation.Speed Limit:
>= 30
-
Amount:
1000
-
Points:
7
Right-click the second row and select
Insert below
to add another row.
-
-
Enter the following values in the third row of the decision table:
-
Violation.Type:
"parking"
-
Violation.Actual Speed - Violation.Speed Limit:
-
-
Amount:
100
-
Points:
1
Right-click the third row and select
Insert below
to add another row.
-
-
Enter the following values in the fourth row of the decision table:
-
Violation.Type:
"driving under the influence"
-
Violation.Actual Speed - Violation.Speed Limit:
-
-
Amount:
1000
-
Points:
5
-
-
Click Save.
-
To define the driver suspension rule, return to the DMN designer canvas, select the Should the driver be suspended? decision node, and click the Edit icon to open the DMN boxed expression designer.
-
Click Select expression → Context.
-
Click ContextEntry-1, enter
Total Points
as the Name, and selectnumber
from the Data Type drop-down menu. -
Click the cell next to Total Points, select
Literal expression
from the context menu, and enterDriver.Points + Fine.Points
as the expression. -
In the cell below Driver.Points + Fine.Points, select
Literal Expression
from the context menu, and enterif Total Points >= 20 then "Yes" else "No"
. -
Click Save.
You have defined how to calculate the fine and the context for deciding when to suspend the driver. You can navigate to the traffic-violation project page and click Build to build the example project and address any errors noted in the Alerts panel.
2.4. Test scenarios
Test scenarios in Drools enable you to validate the functionality of business rules and business rule data (for rules-based test scenarios) or of DMN models (for DMN-based test scenarios) before deploying them into a production environment. With a test scenario, you use data from your project to set given conditions and expected results based on one or more defined business rules. When you run the scenario, the expected results and actual results of the rule instance are compared. If the expected results match the actual results, the test is successful. If the expected results do not match the actual results, then the test fails.
Drools includes both the new Test Scenarios designer and the former Test Scenarios (Legacy) designer. The default designer is the new test scenarios designer, which supports the testing of both rules and DMN models and provides an enhanced overall user experience with test scenarios. If required, you can continue to use the legacy test scenarios designer, which supports rule-based test scenarios only.
The legacy test scenarios designer is deprecated from Drools version 7.3.0. It will be removed in a future Drools release. Use the new test scenarios designer instead. |
You can run the defined test scenarios in a number of ways, for example, you can run available test scenarios at the project level or inside a specific test scenario asset. Test scenarios are independent and cannot affect or modify other test scenarios. You can run test scenarios at any time during project development in Business Central. You do not have to compile or deploy your decision service to run test scenarios.
You can import data objects from different packages to the same project package as the test scenario. Assets in the same package are imported by default. After you create the necessary data objects and the test scenario, you can use the Data Objects tab of the test scenarios designer to verify that all required data objects are listed or to import other existing data objects by adding a New item.
Throughout the test scenarios documentation, all references to test scenarios and the test scenarios designer are for the new version, unless explicitly noted as the legacy version. |
2.4.1. Testing the traffic violations using test scenarios
Use the test scenarios designer in Business Central to test the DMN decision requirements diagrams (DRDs) and define decision logic for the traffic violations project.

-
You have successfully built the traffic violations project in Business Central.
-
On the traffic-violation project’s home screen, click Add Asset to open the Add Asset screen.
-
Click Test Scenario to open the Create new Test Scenario dialog.
-
Enter
Violation Scenarios
in the Test Scenario field. -
From the Package list, select
com.myspace.traffic_violation
. -
Select
DMN
as the Source type. -
From the Choose a DMN asset list, select the path to the DMN asset.
-
Click Ok to open the Violation Scenarios test scenario in the Test Scenarios designer.
-
-
Under Driver column sub-header, right-click the State, City, Age, and Name value cells and select Delete column from the context menu options to remove them.
-
Under Violation column sub-header, right-click the Date and Code value cells and select Delete column to remove them.
-
Enter the following information in the first row of the test scenarios:
-
Scenario description:
Above speed limit: 10km/h and 30 km/h
-
Points (under Given column header):
10
-
Type:
"speed"
-
Speed Limit:
100
-
Actual Speed:
120
-
Points:
3
-
Amount:
500
-
Should the driver be suspended?:
"No"
Right-click the first row and select Insert row below to add another row.
-
-
Enter the following information in the second row of the test scenarios:
-
Scenario description:
Above speed limit: more than 30 km/h
-
Points (under Given column header):
10
-
Type:
"speed"
-
Speed Limit:
100
-
Actual Speed:
150
-
Points:
7
-
Amount:
1000
-
Should the driver be suspended?:
"No"
Right-click the second row and select Insert row below to add another row.
-
-
Enter the following information in the third row of the test scenarios:
-
Scenario description:
Parking violation
-
Points (under Given column header):
10
-
Type:
"parking"
-
Speed Limit: leave blank
-
Actual Speed: leave blank
-
Points:
1
-
Amount:
100
-
Should the driver be suspended?:
"No"
Right-click the third row and select Insert row below to add another row.
-
-
Enter the following information in the fourth row of the test scenarios:
-
Scenario description:
DUI violation
-
Points (under Given column header):
10
-
Type:
"driving under the influence"
-
Speed Limit: leave blank
-
Actual Speed: leave blank
-
Points:
5
-
Amount:
1000
-
Should the driver be suspended?:
"No"
Right-click the fourth row and select Insert row below to add another row.
-
-
Enter the following information in the fifth row of the test scenarios:
-
Scenario description:
Driver suspended
-
Points (under Given column header):
15
-
Type:
"speed"
-
Speed Limit:
100
-
Actual Speed:
140
-
Points:
7
-
Amount:
1000
-
Should the driver be suspended?:
"Yes"
-
-
Click Save.
-
Click the Play icon
to check whether the test scenarios pass or fail.
Figure 15. Test scenario execution result for the traffic violations exampleIn case of failure, correct the errors and run the test scenarios again.
2.5. DMN model execution
You can create or import DMN files in your Drools project using Business Central or package the DMN files as part of your project knowledge JAR (KJAR) file without Business Central. After you implement your DMN files in your Drools project, you can execute the DMN decision service by deploying the KIE container that contains it to KIE Server for remote access and interacting with the container using the KIE Server REST API.
For information about including external DMN assets with your project packaging and deployment method, see Build, Deploy, Utilize and Run.
2.5.1. Executing a DMN service using the KIE Server REST API
Directly interacting with the REST endpoints of KIE Server provides the most separation between the calling code and the decision logic definition. The calling code is completely free of direct dependencies, and you can implement it in an entirely different development platform such as Node.js
or .NET
. The examples in this section demonstrate Nix-style curl commands but provide relevant information to adapt to any REST client.
When you use a REST endpoint of KIE Server, the best practice is to define a domain object POJO Java class, annotated with standard KIE Server marshalling annotations. For example, the following code is using a domain object Person
class that is annotated properly:
@javax.xml.bind.annotation.XmlAccessorType(javax.xml.bind.annotation.XmlAccessType.FIELD)
public class Person implements java.io.Serializable {
static final long serialVersionUID = 1L;
private java.lang.String id;
private java.lang.String name;
@javax.xml.bind.annotation.adapters.XmlJavaTypeAdapter(org.kie.internal.jaxb.LocalDateXmlAdapter.class)
private java.time.LocalDate dojoining;
public Person() {
}
public java.lang.String getId() {
return this.id;
}
public void setId(java.lang.String id) {
this.id = id;
}
public java.lang.String getName() {
return this.name;
}
public void setName(java.lang.String name) {
this.name = name;
}
public java.time.LocalDate getDojoining() {
return this.dojoining;
}
public void setDojoining(java.time.LocalDate dojoining) {
this.dojoining = dojoining;
}
public Person(java.lang.String id, java.lang.String name,
java.time.LocalDate dojoining) {
this.id = id;
this.name = name;
this.dojoining = dojoining;
}
}
For more information about the KIE Server REST API, see KIE Server REST API for KIE containers and business assets.
-
KIE Server is installed and configured, including a known user name and credentials for a user with the
kie-server
role. For installation options, see Installation and Setup (Core and IDE). -
You have built the DMN project as a KJAR artifact and deployed it to KIE Server:
mvn clean install
For more information about project packaging and deployment and executable models, see Build, Deploy, Utilize and Run.
-
You have the ID of the KIE container containing the DMN model. If more than one model is present, you must also know the model namespace and model name of the relevant model.
-
Determine the base URL for accessing the KIE Server REST API endpoints. This requires knowing the following values (with the default local deployment values as an example):
-
Host (
localhost
) -
Port (
8080
) -
Root context (
kie-server
) -
Base REST path (
services/rest/
)
Example base URL in local deployment for the traffic violations project:
http://localhost:8080/kie-server/services/rest/server/containers/traffic-violation_1.0.0-SNAPSHOT
-
-
Determine user authentication requirements.
When users are defined directly in the KIE Server configuration, HTTP Basic authentication is used and requires the user name and password. Successful requests require that the user have the
kie-server
role.The following example demonstrates how to add credentials to a curl request:
curl -u username:password <request>
If KIE Server is configured with Red Hat Single Sign-On, the request must include a bearer token:
curl -H "Authorization: bearer $TOKEN" <request>
-
Specify the format of the request and response. The REST API endpoints work with both JSON and XML formats and are set using request headers:
JSONcurl -H "accept: application/json" -H "content-type: application/json"
XMLcurl -H "accept: application/xml" -H "content-type: application/xml"
-
Optional: Query the container for a list of deployed decision models:
[GET]
server/containers/{containerId}/dmn
Example curl request:
curl -u wbadmin:wbadmin -H "accept: application/xml" -X GET "http://localhost:8080/kie-server/services/rest/server/containers/traffic-violation_1.0.0-SNAPSHOT/dmn"
Sample XML output:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?> <response type="SUCCESS" msg="Ok models successfully retrieved from container 'traffic-violation_1.0.0-SNAPSHOT'"> <dmn-model-info-list> <model> <model-namespace>https://kiegroup.org/dmn/_60b01f4d-e407-43f7-848e-258723b5fac8</model-namespace> <model-name>Traffic Violation</model-name> <model-id>_2CD7D1AA-BD84-4B43-AD21-B0342ADE655A</model-id> <decisions> <dmn-decision-info> <decision-id>_23428EE8-DC8B-4067-8E67-9D7C53EC975F</decision-id> <decision-name>Fine</decision-name> </dmn-decision-info> <dmn-decision-info> <decision-id>_B5EEE2B1-915C-44DC-BE43-C244DC066FD8</decision-id> <decision-name>Should the driver be suspended?</decision-name> </dmn-decision-info> </decisions> <inputs> <dmn-inputdata-info> <inputdata-id>_CEB959CD-3638-4A87-93BA-03CD0FB63AE3</inputdata-id> <inputdata-name>Violation</inputdata-name> <inputdata-typeref> <namespace-uri>https://kiegroup.org/dmn/_60B01F4D-E407-43F7-848E-258723B5FAC8</namespace-uri> <local-part>tViolation</local-part> <prefix></prefix> </inputdata-typeref> </dmn-inputdata-info> <dmn-inputdata-info> <inputdata-id>_B0E810E6-7596-430A-B5CF-67CE16863B6C</inputdata-id> <inputdata-name>Driver</inputdata-name> <inputdata-typeref> <namespace-uri>https://kiegroup.org/dmn/_60B01F4D-E407-43F7-848E-258723B5FAC8</namespace-uri> <local-part>tDriver</local-part> <prefix></prefix> </inputdata-typeref> </dmn-inputdata-info> </inputs> <itemdefinitions> <dmn-itemdefinition-info> <itemdefinition-id>_9C758F4A-7D72-4D0F-B63F-2F5B8405980E</itemdefinition-id> <itemdefinition-name>tViolation</itemdefinition-name> <itemdefinition-itemcomponent> <dmn-itemdefinition-info> <itemdefinition-id>_0B6FF1E2-ACE9-4FB3-876B-5BB30B88009B</itemdefinition-id> <itemdefinition-name>Code</itemdefinition-name> <itemdefinition-typeref> <namespace-uri>https://kiegroup.org/dmn/_60b01f4d-e407-43f7-848e-258723b5fac8</namespace-uri> <local-part>string</local-part> <prefix></prefix> </itemdefinition-typeref> <itemdefinition-itemcomponent/> <itemdefinition-iscollection>false</itemdefinition-iscollection> </dmn-itemdefinition-info> <dmn-itemdefinition-info> <itemdefinition-id>_27A5DA18-3CA7-4C06-81B7-CF7F2F050E29</itemdefinition-id> <itemdefinition-name>date</itemdefinition-name> <itemdefinition-typeref> <namespace-uri>https://kiegroup.org/dmn/_60B01F4D-E407-43F7-848E-258723B5FAC8</namespace-uri> <local-part>date</local-part> <prefix></prefix> </itemdefinition-typeref> <itemdefinition-itemcomponent/> <itemdefinition-iscollection>false</itemdefinition-iscollection> </dmn-itemdefinition-info> <dmn-itemdefinition-info> <itemdefinition-id>_8961969A-8A80-4F12-B568-346920C0F038</itemdefinition-id> <itemdefinition-name>type</itemdefinition-name> <itemdefinition-typeref> <namespace-uri>https://kiegroup.org/dmn/_60B01F4D-E407-43F7-848E-258723B5FAC8</namespace-uri> <local-part>string</local-part> <prefix></prefix> </itemdefinition-typeref> <itemdefinition-itemcomponent/> <itemdefinition-iscollection>false</itemdefinition-iscollection> </dmn-itemdefinition-info> <dmn-itemdefinition-info> <itemdefinition-id>_7450F12A-3E95-4D5E-8DCE-2CB1FAC2BDD4</itemdefinition-id> <itemdefinition-name>speed limit</itemdefinition-name> <itemdefinition-typeref> <namespace-uri>https://kiegroup.org/dmn/_60b01f4d-e407-43f7-848e-258723b5fac8</namespace-uri> <local-part>number</local-part> <prefix></prefix> </itemdefinition-typeref> <itemdefinition-itemcomponent/> <itemdefinition-iscollection>false</itemdefinition-iscollection> </dmn-itemdefinition-info> <dmn-itemdefinition-info> <itemdefinition-id>_0A9A6F26-6C14-414D-A9BF-765E5850429A</itemdefinition-id> <itemdefinition-name>Actual Speed</itemdefinition-name> <itemdefinition-typeref> <namespace-uri>https://kiegroup.org/dmn/_60B01F4D-E407-43F7-848E-258723B5FAC8</namespace-uri> <local-part>number</local-part> <prefix></prefix> </itemdefinition-typeref> <itemdefinition-itemcomponent/> <itemdefinition-iscollection>false</itemdefinition-iscollection> </dmn-itemdefinition-info> </itemdefinition-itemcomponent> <itemdefinition-iscollection>false</itemdefinition-iscollection> </dmn-itemdefinition-info> <dmn-itemdefinition-info> <itemdefinition-id>_13C7EFD8-B85C-43BF-94D3-14FABE39A4A0</itemdefinition-id> <itemdefinition-name>tDriver</itemdefinition-name> <itemdefinition-itemcomponent> <dmn-itemdefinition-info> <itemdefinition-id>_EC11744C-4160-4549-9610-2C757F40DFE8</itemdefinition-id> <itemdefinition-name>Name</itemdefinition-name> <itemdefinition-typeref> <namespace-uri>https://kiegroup.org/dmn/_60B01F4D-E407-43F7-848E-258723B5FAC8</namespace-uri> <local-part>string</local-part> <prefix></prefix> </itemdefinition-typeref> <itemdefinition-itemcomponent/> <itemdefinition-iscollection>false</itemdefinition-iscollection> </dmn-itemdefinition-info> <dmn-itemdefinition-info> <itemdefinition-id>_E95BE3DB-4A51-4658-A166-02493EAAC9D2</itemdefinition-id> <itemdefinition-name>Age</itemdefinition-name> <itemdefinition-typeref> <namespace-uri>https://kiegroup.org/dmn/_60B01F4D-E407-43F7-848E-258723B5FAC8</namespace-uri> <local-part>number</local-part> <prefix></prefix> </itemdefinition-typeref> <itemdefinition-itemcomponent/> <itemdefinition-iscollection>false</itemdefinition-iscollection> </dmn-itemdefinition-info> <dmn-itemdefinition-info> <itemdefinition-id>_7B3023E2-BC44-4BF3-BF7E-773C240FB9AD</itemdefinition-id> <itemdefinition-name>State</itemdefinition-name> <itemdefinition-typeref> <namespace-uri>https://kiegroup.org/dmn/_60B01F4D-E407-43F7-848E-258723B5FAC8</namespace-uri> <local-part>string</local-part> <prefix></prefix> </itemdefinition-typeref> <itemdefinition-itemcomponent/> <itemdefinition-iscollection>false</itemdefinition-iscollection> </dmn-itemdefinition-info> <dmn-itemdefinition-info> <itemdefinition-id>_3D4B49DD-700C-4925-99A7-3B2B873F7800</itemdefinition-id> <itemdefinition-name>city</itemdefinition-name> <itemdefinition-typeref> <namespace-uri>https://kiegroup.org/dmn/_60B01F4D-E407-43F7-848E-258723B5FAC8</namespace-uri> <local-part>string</local-part> <prefix></prefix> </itemdefinition-typeref> <itemdefinition-itemcomponent/> <itemdefinition-iscollection>false</itemdefinition-iscollection> </dmn-itemdefinition-info> <dmn-itemdefinition-info> <itemdefinition-id>_B37C49E8-B0D9-4B20-9DC6-D655BB1CA7B1</itemdefinition-id> <itemdefinition-name>Points</itemdefinition-name> <itemdefinition-typeref> <namespace-uri>https://kiegroup.org/dmn/_60B01F4D-E407-43F7-848E-258723B5FAC8</namespace-uri> <local-part>number</local-part> <prefix></prefix> </itemdefinition-typeref> <itemdefinition-itemcomponent/> <itemdefinition-iscollection>false</itemdefinition-iscollection> </dmn-itemdefinition-info> </itemdefinition-itemcomponent> <itemdefinition-iscollection>false</itemdefinition-iscollection> </dmn-itemdefinition-info> <dmn-itemdefinition-info> <itemdefinition-id>_A4077C7E-B57A-4DEE-9C65-7769636316F3</itemdefinition-id> <itemdefinition-name>tFine</itemdefinition-name> <itemdefinition-itemcomponent> <dmn-itemdefinition-info> <itemdefinition-id>_79B152A8-DE83-4001-B88B-52DFF0D73B2D</itemdefinition-id> <itemdefinition-name>Amount</itemdefinition-name> <itemdefinition-typeref> <namespace-uri>https://kiegroup.org/dmn/_60B01F4D-E407-43F7-848E-258723B5FAC8</namespace-uri> <local-part>number</local-part> <prefix></prefix> </itemdefinition-typeref> <itemdefinition-itemcomponent/> <itemdefinition-iscollection>false</itemdefinition-iscollection> </dmn-itemdefinition-info> <dmn-itemdefinition-info> <itemdefinition-id>_D7CB5F9C-9D55-48C2-83EE-D47045EC90D0</itemdefinition-id> <itemdefinition-name>Points</itemdefinition-name> <itemdefinition-typeref> <namespace-uri>https://kiegroup.org/dmn/_60B01F4D-E407-43F7-848E-258723B5FAC8</namespace-uri> <local-part>number</local-part> <prefix></prefix> </itemdefinition-typeref> <itemdefinition-itemcomponent/> <itemdefinition-iscollection>false</itemdefinition-iscollection> </dmn-itemdefinition-info> </itemdefinition-itemcomponent> <itemdefinition-iscollection>false</itemdefinition-iscollection> </dmn-itemdefinition-info> </itemdefinitions> <decisionservices/> </model> </dmn-model-info-list> </response>
Sample JSON output:
{ "type" : "SUCCESS", "msg" : "OK models successfully retrieved from container 'Traffic-Violation_1.0.0-SNAPSHOT'", "result" : { "dmn-model-info-list" : { "models" : [ { "model-namespace" : "https://kiegroup.org/dmn/_60B01F4D-E407-43F7-848E-258723B5FAC8", "model-name" : "Traffic Violation", "model-id" : "_2CD7D1AA-BD84-4B43-AD21-B0342ADE655A", "decisions" : [ { "decision-id" : "_23428EE8-DC8B-4067-8E67-9D7C53EC975F", "decision-name" : "Fine" }, { "decision-id" : "_B5EEE2B1-915C-44DC-BE43-C244DC066FD8", "decision-name" : "Should the driver be suspended?" } ], "inputs" : [ { "inputdata-id" : "_CEB959CD-3638-4A87-93BA-03CD0FB63AE3", "inputdata-name" : "Violation", "inputdata-typeRef" : { "namespace-uri" : "https://kiegroup.org/dmn/_60B01F4D-E407-43F7-848E-258723B5FAC8", "local-part" : "tViolation", "prefix" : "" } }, { "inputdata-id" : "_B0E810E6-7596-430A-B5CF-67CE16863B6C", "inputdata-name" : "Driver", "inputdata-typeRef" : { "namespace-uri" : "https://kiegroup.org/dmn/_60B01F4D-E407-43F7-848E-258723B5FAC8", "local-part" : "tDriver", "prefix" : "" } } ], "itemDefinitions" : [ { "itemdefinition-id" : "_13C7EFD8-B85C-43BF-94D3-14FABE39A4A0", "itemdefinition-name" : "tDriver", "itemdefinition-typeRef" : null, "itemdefinition-itemComponent" : [ { "itemdefinition-id" : "_EC11744C-4160-4549-9610-2C757F40DFE8", "itemdefinition-name" : "Name", "itemdefinition-typeRef" : { "namespace-uri" : "https://kiegroup.org/dmn/_60B01F4D-E407-43F7-848E-258723B5FAC8", "local-part" : "string", "prefix" : "" }, "itemdefinition-itemComponent" : [ ], "itemdefinition-isCollection" : false }, { "itemdefinition-id" : "_E95BE3DB-4A51-4658-A166-02493EAAC9D2", "itemdefinition-name" : "Age", "itemdefinition-typeRef" : { "namespace-uri" : "https://kiegroup.org/dmn/_60B01F4D-E407-43F7-848E-258723B5FAC8", "local-part" : "number", "prefix" : "" }, "itemdefinition-itemComponent" : [ ], "itemdefinition-isCollection" : false }, { "itemdefinition-id" : "_7B3023E2-BC44-4BF3-BF7E-773C240FB9AD", "itemdefinition-name" : "State", "itemdefinition-typeRef" : { "namespace-uri" : "https://kiegroup.org/dmn/_60B01F4D-E407-43F7-848E-258723B5FAC8", "local-part" : "string", "prefix" : "" }, "itemdefinition-itemComponent" : [ ], "itemdefinition-isCollection" : false }, { "itemdefinition-id" : "_3D4B49DD-700C-4925-99A7-3B2B873F7800", "itemdefinition-name" : "City", "itemdefinition-typeRef" : { "namespace-uri" : "https://kiegroup.org/dmn/_60B01F4D-E407-43F7-848E-258723B5FAC8", "local-part" : "string", "prefix" : "" }, "itemdefinition-itemComponent" : [ ], "itemdefinition-isCollection" : false }, { "itemdefinition-id" : "_B37C49E8-B0D9-4B20-9DC6-D655BB1CA7B1", "itemdefinition-name" : "Points", "itemdefinition-typeRef" : { "namespace-uri" : "https://kiegroup.org/dmn/_60B01F4D-E407-43F7-848E-258723B5FAC8", "local-part" : "number", "prefix" : "" }, "itemdefinition-itemComponent" : [ ], "itemdefinition-isCollection" : false } ], "itemdefinition-isCollection" : false }, { "itemdefinition-id" : "_A4077C7E-B57A-4DEE-9C65-7769636316F3", "itemdefinition-name" : "tFine", "itemdefinition-typeRef" : null, "itemdefinition-itemComponent" : [ { "itemdefinition-id" : "_79B152A8-DE83-4001-B88B-52DFF0D73B2D", "itemdefinition-name" : "Amount", "itemdefinition-typeRef" : { "namespace-uri" : "https://kiegroup.org/dmn/_60B01F4D-E407-43F7-848E-258723B5FAC8", "local-part" : "number", "prefix" : "" }, "itemdefinition-itemComponent" : [ ], "itemdefinition-isCollection" : false }, { "itemdefinition-id" : "_D7CB5F9C-9D55-48C2-83EE-D47045EC90D0", "itemdefinition-name" : "Points", "itemdefinition-typeRef" : { "namespace-uri" : "https://kiegroup.org/dmn/_60B01F4D-E407-43F7-848E-258723B5FAC8", "local-part" : "number", "prefix" : "" }, "itemdefinition-itemComponent" : [ ], "itemdefinition-isCollection" : false } ], "itemdefinition-isCollection" : false }, { "itemdefinition-id" : "_9C758F4A-7D72-4D0F-B63F-2F5B8405980E", "itemdefinition-name" : "tViolation", "itemdefinition-typeRef" : null, "itemdefinition-itemComponent" : [ { "itemdefinition-id" : "_0B6FF1E2-ACE9-4FB3-876B-5BB30B88009B", "itemdefinition-name" : "Code", "itemdefinition-typeRef" : { "namespace-uri" : "https://kiegroup.org/dmn/_60B01F4D-E407-43F7-848E-258723B5FAC8", "local-part" : "string", "prefix" : "" }, "itemdefinition-itemComponent" : [ ], "itemdefinition-isCollection" : false }, { "itemdefinition-id" : "_27A5DA18-3CA7-4C06-81B7-CF7F2F050E29", "itemdefinition-name" : "Date", "itemdefinition-typeRef" : { "namespace-uri" : "https://kiegroup.org/dmn/_60B01F4D-E407-43F7-848E-258723B5FAC8", "local-part" : "date", "prefix" : "" }, "itemdefinition-itemComponent" : [ ], "itemdefinition-isCollection" : false }, { "itemdefinition-id" : "_8961969A-8A80-4F12-B568-346920C0F038", "itemdefinition-name" : "Type", "itemdefinition-typeRef" : { "namespace-uri" : "https://kiegroup.org/dmn/_60B01F4D-E407-43F7-848E-258723B5FAC8", "local-part" : "string", "prefix" : "" }, "itemdefinition-itemComponent" : [ ], "itemdefinition-isCollection" : false }, { "itemdefinition-id" : "_7450F12A-3E95-4D5E-8DCE-2CB1FAC2BDD4", "itemdefinition-name" : "Speed Limit", "itemdefinition-typeRef" : { "namespace-uri" : "https://kiegroup.org/dmn/_60B01F4D-E407-43F7-848E-258723B5FAC8", "local-part" : "number", "prefix" : "" }, "itemdefinition-itemComponent" : [ ], "itemdefinition-isCollection" : false }, { "itemdefinition-id" : "_0A9A6F26-6C14-414D-A9BF-765E5850429A", "itemdefinition-name" : "Actual Speed", "itemdefinition-typeRef" : { "namespace-uri" : "https://kiegroup.org/dmn/_60B01F4D-E407-43F7-848E-258723B5FAC8", "local-part" : "number", "prefix" : "" }, "itemdefinition-itemComponent" : [ ], "itemdefinition-isCollection" : false } ], "itemdefinition-isCollection" : false } ], "decisionServices" : [ ] } ] } } }
-
Execute the model:
[POST]
server/containers/{containerId}/dmn
The attribute
model-namespace
is automatically generated and is different for every user. Ensure that themodel-namespace
andmodel-name
attributes that you use match those of the deployed model.Example curl request:
curl -u wbadmin:wbadmin -H "accept: application/json" -H "content-type: application/json" -X POST "http://localhost:8080/kie-server/services/rest/server/containers/traffic-violation_1.0.0-SNAPSHOT/dmn" -d "{ \"model-namespace\" : \"https://kiegroup.org/dmn/_60B01F4D-E407-43F7-848E-258723B5FAC8\", \"model-name\" : \"Traffic Violation\", \"dmn-context\" : {\"Driver\" : {\"Points\" : 15}, \"Violation\" : {\"Type\" : \"speed\", \"Actual Speed\" : 135, \"Speed Limit\" : 100}}}"
Example JSON request:
{ "model-namespace" : "https://kiegroup.org/dmn/_60B01F4D-E407-43F7-848E-258723B5FAC8", "model-name" : "Traffic Violation", "dmn-context" : { "Driver" : { "Points" : 15 }, "Violation" : { "Type" : "speed", "Actual Speed" : 135, "Speed Limit" : 100 } } }
Example XML request (JAXB format):
<?xml version="1.0" encoding="UTF-8" standalone="yes"?> <dmn-evaluation-context> <dmn-context xsi:type="jaxbListWrapper" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <type>MAP</type> <element xsi:type="jaxbStringObjectPair" key="Violation"> <value xsi:type="jaxbListWrapper"> <type>MAP</type> <element xsi:type="jaxbStringObjectPair" key="Type"> <value xsi:type="xs:string" xmlns:xs="http://www.w3.org/2001/XMLSchema">speed</value> </element> <element xsi:type="jaxbStringObjectPair" key="Speed Limit"> <value xsi:type="xs:decimal" xmlns:xs="http://www.w3.org/2001/XMLSchema">100</value> </element> <element xsi:type="jaxbStringObjectPair" key="Actual Speed"> <value xsi:type="xs:decimal" xmlns:xs="http://www.w3.org/2001/XMLSchema">135</value> </element> </value> </element> <element xsi:type="jaxbStringObjectPair" key="Driver"> <value xsi:type="jaxbListWrapper"> <type>MAP</type> <element xsi:type="jaxbStringObjectPair" key="Points"> <value xsi:type="xs:decimal" xmlns:xs="http://www.w3.org/2001/XMLSchema">15</value> </element> </value> </element> </dmn-context> </dmn-evaluation-context>
Regardless of the request format, the request requires the following elements:
-
Model namespace
-
Model name
-
Context object containing input values
Example JSON response:
{ "type": "SUCCESS", "msg": "OK from container 'Traffic-Violation_1.0.0-SNAPSHOT'", "result": { "dmn-evaluation-result": { "messages": [], "model-namespace": "https://kiegroup.org/dmn/_7D8116DE-ADF5-4560-A116-FE1A2EAFFF48", "model-name": "Traffic Violation", "decision-name": [], "dmn-context": { "Violation": { "Type": "speed", "Speed Limit": 100, "Actual Speed": 135 }, "Should Driver be Suspended?": "Yes", "Driver": { "Points": 15 }, "Fine": { "Points": 7, "Amount": 1000 } }, "decision-results": { "_E1AF5AC2-E259-455C-96E4-596E30D3BC86": { "messages": [], "decision-id": "_E1AF5AC2-E259-455C-96E4-596E30D3BC86", "decision-name": "Should the Driver be Suspended?", "result": "Yes", "status": "SUCCEEDED" }, "_D7F02CE0-AF50-4505-AB80-C7D6DE257920": { "messages": [], "decision-id": "_D7F02CE0-AF50-4505-AB80-C7D6DE257920", "decision-name": "Fine", "result": { "Points": 7, "Amount": 1000 }, "status": "SUCCEEDED" } } } } }
Example XML (JAXB format) response:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?> <response type="SUCCESS" msg="OK from container 'Traffic_1.0.0-SNAPSHOT'"> <dmn-evaluation-result> <model-namespace>https://kiegroup.org/dmn/_A4BCA8B8-CF08-433F-93B2-A2598F19ECFF</model-namespace> <model-name>Traffic Violation</model-name> <dmn-context xsi:type="jaxbListWrapper" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <type>MAP</type> <element xsi:type="jaxbStringObjectPair" key="Violation"> <value xsi:type="jaxbListWrapper"> <type>MAP</type> <element xsi:type="jaxbStringObjectPair" key="Type"> <value xsi:type="xs:string" xmlns:xs="http://www.w3.org/2001/XMLSchema">speed</value> </element> <element xsi:type="jaxbStringObjectPair" key="Speed Limit"> <value xsi:type="xs:decimal" xmlns:xs="http://www.w3.org/2001/XMLSchema">100</value> </element> <element xsi:type="jaxbStringObjectPair" key="Actual Speed"> <value xsi:type="xs:decimal" xmlns:xs="http://www.w3.org/2001/XMLSchema">135</value> </element> </value> </element> <element xsi:type="jaxbStringObjectPair" key="Driver"> <value xsi:type="jaxbListWrapper"> <type>MAP</type> <element xsi:type="jaxbStringObjectPair" key="Points"> <value xsi:type="xs:decimal" xmlns:xs="http://www.w3.org/2001/XMLSchema">15</value> </element> </value> </element> <element xsi:type="jaxbStringObjectPair" key="Fine"> <value xsi:type="jaxbListWrapper"> <type>MAP</type> <element xsi:type="jaxbStringObjectPair" key="Points"> <value xsi:type="xs:decimal" xmlns:xs="http://www.w3.org/2001/XMLSchema">7</value> </element> <element xsi:type="jaxbStringObjectPair" key="Amount"> <value xsi:type="xs:decimal" xmlns:xs="http://www.w3.org/2001/XMLSchema">1000</value> </element> </value> </element> <element xsi:type="jaxbStringObjectPair" key="Should the driver be suspended?"> <value xsi:type="xs:string" xmlns:xs="http://www.w3.org/2001/XMLSchema">Yes</value> </element> </dmn-context> <messages/> <decisionResults> <entry> <key>_4055D956-1C47-479C-B3F4-BAEB61F1C929</key> <value> <decision-id>_4055D956-1C47-479C-B3F4-BAEB61F1C929</decision-id> <decision-name>Fine</decision-name> <result xsi:type="jaxbListWrapper" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <type>MAP</type> <element xsi:type="jaxbStringObjectPair" key="Points"> <value xsi:type="xs:decimal" xmlns:xs="http://www.w3.org/2001/XMLSchema">7</value> </element> <element xsi:type="jaxbStringObjectPair" key="Amount"> <value xsi:type="xs:decimal" xmlns:xs="http://www.w3.org/2001/XMLSchema">1000</value> </element> </result> <messages/> <status>SUCCEEDED</status> </value> </entry> <entry> <key>_8A408366-D8E9-4626-ABF3-5F69AA01F880</key> <value> <decision-id>_8A408366-D8E9-4626-ABF3-5F69AA01F880</decision-id> <decision-name>Should the driver be suspended?</decision-name> <result xsi:type="xs:string" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Yes</result> <messages/> <status>SUCCEEDED</status> </value> </entry> </decisionResults> </dmn-evaluation-result> </response>
-
KIE
KIE is the shared core for Drools and jBPM. It provides a unified methodology and programming model for building, deploying and utilizing resources.
3. KIE
3.1. Overview
3.1.1. Anatomy of Projects
The process of researching an integration knowledge solution for Drools and jBPM has simply used the "kiegroup" group name. This name permeates GitHub accounts and Maven POMs. As scopes broadened and new projects were spun KIE, an acronym for Knowledge Is Everything, was chosen as the new group name. The KIE name is also used for the shared aspects of the system; such as the unified build, deploy and utilization.
KIE currently consists of the following subprojects:

OptaPlanner, a local search and optimization tool, has been spun off from Drools Planner and is now a top level project with Drools and jBPM. This was a natural evolution as Optaplanner, while having strong Drools integration, has long been independent of Drools.
From the Polymita acquisition, along with other things, comes the powerful Dashboard Builder which provides powerful reporting capabilities. Dashboard Builder is currently a temporary name and after the 6.0 release a new name will be chosen. Dashboard Builder is completely independent of Drools and jBPM and will be used by many projects at JBoss, and hopefully outside of JBoss :)
UberFire is the new base Business Central project, spun off from the ground up rewrite. UberFire provides Eclipse-like workbench capabilities, with panels and pages from plugins. The project is independent of Drools and jBPM and anyone can use it as a basis of building flexible and powerful workbenches like Business Central. UberFire will be used for console and workbench development throughout JBoss.
It was determined that the Guvnor brand leaked too much from its intended role; such as the authoring metaphors, like Decision Tables, being considered Guvnor components instead of Drools components. This wasn’t helped by the monolithic projects structure used in 5.x for Guvnor. In 6.0 Guvnor’s focus has been narrowed to encapsulate the set of UberFire plugins that provide the basis for building a web based IDE. Such as Maven integration for building and deploying, management of Maven repositories and activity notifications via inboxes. Drools and jBPM build Business Central distributions using Uberfire as the base and including a set of plugins, such as Guvnor, along with their own plugins for things like decision tables, guided editors, BPMN2 designer, human tasks. Business Central is called business-central.
KIE-WB is the uber workbench that combined all the Guvnor, Drools and jBPM plugins. The jBPM-WB is ghosted out, as it doesn’t actually exist, being made redundant by KIE-WB.
3.1.2. Lifecycles
The different aspects, or life cycles, of working with KIE system, whether it’s Drools or jBPM, can typically be broken down into the following:
-
Author
-
Authoring of knowledge using a UI metaphor, such as: DRL, BPMN2, decision table, class models.
-
-
Build
-
Builds the authored knowledge into deployable units.
-
For KIE this unit is a JAR.
-
-
Test
-
Test KIE knowledge before it’s deployed to the application.
-
-
Deploy
-
Deploys the unit to a location where applications may utilize (consume) them.
-
KIE uses Maven style repository.
-
-
Utilize
-
The loading of a JAR to provide a KIE session (KieSession), for which the application can interact with.
-
KIE exposes the JAR at runtime via a KIE container (KieContainer).
-
KieSessions, for the runtime’s to interact with, are created from the KieContainer.
-
-
Run
-
System interaction with the KieSession, via API.
-
-
Work
-
User interaction with the KieSession, via command line or UI.
-
-
Manage
-
Manage any KieSession or KieContainer.
-
3.1.3. Installation environment options for Drools
With Drools, you can set up a development environment to develop business applications, a runtime environment to run those applications to support decisions, or both.
-
Development environment: Typically consists of one Business Central installation and at least one KIE Server installation. You can use Business Central to design decisions and other artifacts, and you can use KIE Server to execute and test the artifacts that you created.
-
Runtime environment: Consists of one or more KIE Server instances with or without Business Central. Business Central has an embedded Process Automation Manager controller. If you install Business Central, use the Menu → Deploy → Execution servers page to create and maintain containers. If you want to automate KIE Server management without Business Central, you can use the headless Process Automation Manager controller.
You can also cluster both development and runtime environments. A clustered development or runtime environment consists of a unified group or cluster of two or more servers. The primary benefit of clustering Drools development environments is high availability and enhanced collaboration, while the primary benefit of clustering Drools runtime environments is high availability and load balancing. High availability decreases the chance of data loss when a single server fails. When a server fails, another server fills the gap by providing a copy of the data that was on the failed server. When the failed server comes online again, it resumes its place in the cluster.
Clustering of the runtime environment is currently supported on Red Hat JBoss EAP 7.4 only. |
3.1.4. Decision-authoring assets in Drools
Drools supports several assets that you can use to define business decisions for your decision service. Each decision-authoring asset has different advantages, and you might prefer to use one or a combination of multiple assets depending on your goals and needs.
The following table highlights the main decision-authoring assets supported in Drools projects to help you decide or confirm the best method for defining decisions in your decision service.
Asset | Highlights | Authoring tools | Documentation |
---|---|---|---|
Decision Model and Notation (DMN) models |
|
Business Central or other DMN-compliant editor |
|
Guided decision tables |
|
Business Central |
|
Spreadsheet decision tables |
|
Spreadsheet editor |
|
Guided rules |
|
Business Central |
|
Guided rule templates |
|
Business Central |
|
DRL rules |
|
Business Central or integrated development environment (IDE) |
|
Predictive Model Markup Language (PMML) models |
|
PMML or XML editor |
When you define business decisions, you can also consider using Red Hat build of Kogito for your cloud-native decision services. For more information about getting started with Red Hat build of Kogito microservices, see Getting started with Red Hat build of Kogito in Drools.
3.1.5. Project storage and build options with Drools
As you develop a Drools project, you need to be able to track the versions of your project with a version-controlled repository, manage your project assets in a stable environment, and build your project for testing and deployment. You can use Business Central for all of these tasks, or use a combination of Business Central and external tools and repositories. Drools supports Git repositories for project version control, Apache Maven for project management, and a variety of Maven-based, Java-based, or custom-tool-based build options.
The following options are the main methods for Drools project versioning, storage, and building:
Versioning option | Description | Documentation |
---|---|---|
Business Central Git VFS |
Business Central contains a built-in Git Virtual File System (VFS) that stores all processes, rules, and other artifacts that you create in the authoring environment. Git is a distributed version control system that implements revisions as commit objects. When you commit your changes into a repository, a new commit object in the Git repository is created. When you create a project in Business Central, the project is added to the Git repository connected to Business Central. |
NA |
External Git repository |
If you have Drools projects in Git repositories outside of Business Central, you can import them into Drools spaces and use Git hooks to synchronize the internal and external Git repositories. |
NA |
Management option | Description | Documentation | ||
---|---|---|---|---|
Business Central Maven repository |
Business Central contains a built-in Maven repository that organizes and builds project assets that you create in the authoring environment. Maven is a distributed build-automation tool that uses repositories to store Java libraries, plug-ins, and other build artifacts. When building projects and archetypes, Maven dynamically retrieves Java libraries and Maven plug-ins from local or remote repositories to promote shared dependencies across projects.
|
|||
External Maven repository |
If you have Drools projects in an external Maven repository, such as Nexus or Artifactory, you can create a |
Build option | Description | Documentation |
---|---|---|
Business Central (KJAR) |
Business Central builds Drools projects stored in either the built-in Maven repository or a configured external Maven repository. Projects in Business Central are packaged automatically as knowledge JAR (KJAR) files with all components needed for deployment when you build the projects. |
|
Standalone Maven project (KJAR) |
If you have a standalone Drools Maven project outside of Business Central, you can edit the project |
|
Embedded Java application (KJAR) |
If you have an embedded Java application from which you want to build your Drools project, you can use a |
|
CI/CD tool (KJAR) |
If you use a tool for continuous integration and continuous delivery (CI/CD), you can configure the tool set to integrate with your Drools Git repositories to build a specified project. Ensure that your projects are packaged and built as KJAR files to ensure optimal deployment. |
NA |
3.1.6. Project deployment options with Drools
After you develop, test, and build your Drools project, you can deploy the project to begin using the business assets you have created. You can deploy a Drools project to a configured KIE Server, to an embedded Java application, or into a Red Hat OpenShift Container Platform environment for an enhanced containerized implementation.
The following options are the main methods for Drools project deployment:
Deployment option | Description | Documentation |
---|---|---|
Deployment to KIE Server |
KIE Server is the server provided with Drools that runs the decision services, process applications, and other deployable assets from a packaged and deployed Drools project (KJAR file). These services are consumed at run time through an instantiated KIE container, or deployment unit. You can deploy and maintain deployment units in KIE Server using Business Central or using a headless Process Automation Manager controller with its associated REST API (considered a managed KIE Server instance). You can also deploy and maintain deployment units using the KIE Server REST API or Java client API from a standalone Maven project, an embedded Java application, or other custom environment (considered an unmanaged KIE Server instance). |
|
Deployment to an embedded Java application |
If you want to deploy Drools projects to your own Java virtual machine (JVM) environment, microservice, or application server, you can bundle the application resources in the project WAR files to create a deployment unit similar to a KIE container. You can also use the core KIE APIs (not KIE Server APIs) to configure a KIE scanner to periodically update KIE containers. |
3.1.7. Asset execution options with Drools
After you build and deploy your Drools project to KIE Server or other environment, you can execute the deployed assets for testing or for runtime consumption. You can also execute assets locally in addition to or instead of executing them after deployment.
The following options are the main methods for Drools asset execution:
Execution option | Description | Documentation |
---|---|---|
Execution in KIE Server |
If you deployed Drools project assets to KIE Server, you can use the KIE Server REST API or Java client API to execute and interact with the deployed assets. You can also use Business Central or the headless Process Automation Manager controller outside of Business Central to manage the configurations and KIE containers in the KIE Server instances associated with your deployed assets. |
|
Execution in an embedded Java application |
If you deployed Drools project assets in your own Java virtual machine (JVM) environment, microservice, or application server, you can use custom APIs or application interactions with core KIE APIs (not KIE Server APIs) to execute assets in the embedded engine. |
|
Execution in a local environment for extended testing |
As part of your development cycle, you can execute assets locally to ensure that the assets you have created in Drools function as intended. You can use local execution in addition to or instead of executing assets after deployment. |
3.1.8. Example decision management architectures with Drools
The following scenarios illustrate common variations of Drools installation, asset authoring, project storage, project deployment, and asset execution in a decision management architecture. Each section summarizes the methods and tools used and the advantages for the given architecture. The examples are basic and are only a few of the many combinations you might consider, depending on your specific goals and needs with Drools.
- Drools on Wildfly with Business Central and KIE Server
-
-
Installation environment: Drools on Wildfly
-
Project storage and build environment: External Git repository for project versioning synchronized with the Business Central Git repository using Git hooks, and external Maven repository for project management and building configured with KIE Server
-
Asset-authoring tool: Business Central
-
Main asset types: Decision Model and Notation (DMN) models for decisions
-
Project deployment and execution environment: KIE Server
-
Scenario advantages:
-
Stable implementation of Drools in an on-premise development environment
-
Access to the repositories, assets, asset designers, and project build options in Business Central
-
Standardized asset-authoring approach using DMN for optimal integration and stability
-
Access to KIE Server functionality and KIE APIs for asset deployment and execution
-
Figure 17. Drools on Wildfly with Business Central and KIE Server -
- Drools on Wildfly with an IDE and KIE Server
-
-
Installation environment: Drools on Wildfly
-
Project storage and build environment: External Git repository for project versioning (not synchronized with Business Central) and external Maven repository for project management and building configured with KIE Server
-
Asset-authoring tools: Integrated development environment (IDE), such as VSCode, and a spreadsheet editor or a Decision Model and Notation (DMN) modeling tool for other decision formats
-
Main asset types: Drools Rule Language (DRL) rules, spreadsheet decision tables, and Decision Model and Notation (DMN) models for decisions
-
Project deployment and execution environment: KIE Server
-
Scenario advantages:
-
Flexible implementation of Drools in an on-premise development environment
-
Ability to define business assets using an external IDE and other asset-authoring tools of your choice
-
Access to KIE Server functionality and KIE APIs for asset deployment and execution
-
Figure 18. Drools on Wildfly with an IDE and KIE Server -
- Drools with an IDE and an embedded Java application
-
-
Installation environment: Drools libraries embedded within a custom application
-
Project storage and build environment: External Git repository for project versioning (not synchronized with Business Central) and external Maven repository for project management and building configured with your embedded Java application (not configured with KIE Server)
-
Asset-authoring tools: Integrated development environment (IDE), such as VSCode, and a spreadsheet editor or a Decision Model and Notation (DMN) modeling tool for other decision formats
-
Main asset types: Drools Rule Language (DRL) rules, spreadsheet decision tables, and Decision Model and Notation (DMN) models for decisions
-
Project deployment and execution environment: Embedded Java application, such as in a Java virtual machine (JVM) environment, microservice, or custom application server
-
Scenario advantages:
-
Custom implementation of Drools in an on-premise development environment with an embedded Java application
-
Ability to define business assets using an external IDE and other asset-authoring tools of your choice
-
Use of custom APIs to interact with core KIE APIs (not KIE Server APIs) and to execute assets in the embedded engine
-
Figure 19. Drools with an IDE and an embedded Java application -
3.2. Build, Deploy, Utilize and Run
3.2.1. Introduction
6.0 introduces a new configuration and convention approach to building KIE bases, instead of using the programmatic builder approach in 5.x. The builder is still available to fall back on, as it’s used for the tooling integration.
Building now uses Maven, and aligns with Maven practices. A KIE project or module is simply a Maven Java project or module; with an additional metadata file META-INF/kmodule.xml. The kmodule.xml file is the descriptor that selects resources to KIE bases and configures those KIE bases and sessions. There is also alternative XML support via Spring and OSGi BluePrints.
While standard Maven can build and package KIE resources, it will not provide validation at build time. There is a Maven plugin which is recommended to use to get build time validation. The plugin also generates many classes, making the runtime loading faster too.
The example project layout and Maven POM descriptor is illustrated in the screenshot

KIE uses defaults to minimise the amount of configuration. With an empty kmodule.xml being the simplest configuration. There must always be a kmodule.xml file, even if empty, as it’s used for discovery of the JAR and its contents.
Maven can either 'mvn install' to deploy a KieModule to the local machine, where all other applications on the local machine use it. Or it can 'mvn deploy' to push the KieModule to a remote Maven repository. Building the Application will pull in the KieModule and populate the local Maven repository in the process.

JARs can be deployed in one of two ways. Either added to the classpath, like any other JAR in a Maven dependency listing, or they can be dynamically loaded at runtime. KIE will scan the classpath to find all the JARs with a kmodule.xml in it. Each found JAR is represented by the KieModule interface. The terms classpath KieModule and dynamic KieModule are used to refer to the two loading approaches. While dynamic modules support side by side versioning, classpath modules do not. Further once a module is on the classpath, no other version may be loaded dynamically.
Detailed references for the API are included in the next sections, the impatient can jump straight to the examples section, which is fairly self-explanatory on the different use cases.
3.2.2. Building

3.2.2.1. Creating and building a Kie Project
A Kie Project has the structure of a normal Maven project with the only peculiarity of including a kmodule.xml file defining in a declaratively way the KieBase
s and KieSession
s that can be created from it.
This file has to be placed in the resources/META-INF folder of the Maven project while all the other Kie artifacts, such as DRL or Excel files, must be stored in the resources folder or in any other subfolder under it.
Since meaningful defaults have been provided for all configuration aspects, the simplest kmodule.xml file can contain just an empty kmodule tag like the following:
<?xml version="1.0" encoding="UTF-8"?>
<kmodule xmlns="http://www.drools.org/xsd/kmodule"/>
In this way the kmodule will contain one single default KieBase
.
All Kie assets stored under the resources folder, or any of its subfolders, will be compiled and added to it.
To trigger the building of these artifacts it is enough to create a KieContainer
for them.

For this simple case it is enough to create a KieContainer
that reads the files to be built from the classpath:
KieServices kieServices = KieServices.Factory.get();
KieContainer kContainer = kieServices.getKieClasspathContainer();
` KieServices` is the interface from where it possible to access all the Kie building and runtime facilities:

In this way all the Java sources and the Kie resources are compiled and deployed into the KieContainer which makes its contents available for use at runtime.
3.2.2.2. The kmodule.xml file
As explained in the former section, the kmodule.xml file is the place where it is possible to declaratively configure the KieBase
(s) and KieSession
(s) that can be created from a KIE project.
In particular a KieBase
is a repository of all the application’s knowledge definitions.
It will contain rules, processes, functions, and type models.
The KieBase
itself does not contain data; instead, sessions are created from the KieBase
into which data can be inserted and from which process instances may be started.
Creating the KieBase
can be heavy, whereas session creation is very light, so it is recommended that KieBase
be cached where possible to allow for repeated session creation.
However end-users usually shouldn’t worry about it, because this caching mechanism is already automatically provided by the KieContainer
.

Conversely the KieSession
stores and executes on the runtime data.
It is created from the KieBase
or more easily can be created directly from the KieContainer
if it has been defined in the kmodule.xml file

The kmodule.xml allows to define and configure one or more KieBase
s and for each KieBase
all the different KieSession
s that can be created from it, as showed by the follwing example:
<kmodule xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://www.drools.org/xsd/kmodule">
<configuration>
<property key="drools.evaluator.supersetOf" value="org.mycompany.SupersetOfEvaluatorDefinition"/>
</configuration>
<kbase name="KBase1" default="true" eventProcessingMode="cloud" equalsBehavior="equality" declarativeAgenda="enabled" packages="org.domain.pkg1">
<ksession name="KSession2_1" type="stateful" default="true"/>
<ksession name="KSession2_2" type="stateless" default="false" beliefSystem="jtms"/>
</kbase>
<kbase name="KBase2" default="false" eventProcessingMode="stream" equalsBehavior="equality" declarativeAgenda="enabled" packages="org.domain.pkg2, org.domain.pkg3" includes="KBase1">
<ksession name="KSession3_1" type="stateful" default="false" clockType="realtime">
<fileLogger file="drools.log" threaded="true" interval="10"/>
<workItemHandlers>
<workItemHandler name="name" type="org.domain.WorkItemHandler"/>
</workItemHandlers>
<calendars>
<calendar name="monday" type="org.domain.Monday"/>
</calendars>
<listeners>
<ruleRuntimeEventListener type="org.domain.RuleRuntimeListener"/>
<agendaEventListener type="org.domain.FirstAgendaListener"/>
<agendaEventListener type="org.domain.SecondAgendaListener"/>
<processEventListener type="org.domain.ProcessListener"/>
</listeners>
</ksession>
</kbase>
</kmodule>
Here the
tag contains a list of key-value pairs that are the optional properties used to configure the KieBase
s building process.
For instance this sample kmodule.xml file defines an additional custom operator named supersetOf
and implemented by the org.mycompany.SupersetOfEvaluatorDefinition
class.
After this 2 KieBase
s have been defined and it is possible to instance 2 different types of KieSession
s from the first one, while only one from the second.
A list of the attributes that can be defined on the kbase tag, together with their meaning and default values follows:
Attribute name | Default value | Admitted values | Meaning |
---|---|---|---|
name |
none |
any |
The name with which retrieve this KieBase from the KieContainer. This is the only mandatory attribute. |
includes |
none |
any comma separated list |
A comma separated list of other KieBases contained in this kmodule. The artifacts of all these KieBases will be also included in this one. |
packages |
all |
any comma separated list |
By default all the Drools artifacts under the resources folder, at any level, are included into the KieBase. This attribute allows to limit the artifacts that will be compiled in this KieBase to only the ones belonging to the list of packages. |
default |
false |
true, false |
Defines if this KieBase is the default one for this module, so it can be created from the KieContainer without passing any name to it. There can be at most one default KieBase in each module. |
equalsBehavior |
identity |
identity, equality |
Defines the behavior of Drools when a new fact is inserted into the Working Memory. With identity it always create a new FactHandle unless the same object isn’t already present in the Working Memory, while with equality only if the newly inserted object is not equal (according to its equal method) to an already existing fact. |
eventProcessingMode |
cloud |
cloud, stream |
When compiled in cloud mode the KieBase treats events as normal facts, while in stream mode allow temporal reasoning on them. |
declarativeAgenda |
disabled |
disabled, enabled |
Defines if the Declarative Agenda is enabled or not. |
Similarly all attributes of the ksession tag (except of course the name) have meaningful default. They are listed and described in the following table:
Attribute name | Default value | Admitted values | Meaning |
---|---|---|---|
name |
none |
any |
Unique name of this KieSession. Used to fetch the KieSession from the KieContainer. This is the only mandatory attribute. |
type |
stateful |
stateful, stateless |
A stateful session allows to iteratively work with the Working Memory, while a stateless one is a one-off execution of a Working Memory with a provided data set. |
default |
false |
true, false |
Defines if this KieSession is the default one for this module, so it can be created from the KieContainer without passing any name to it. In each module there can be at most one default KieSession for each type. |
clockType |
realtime |
realtime, pseudo |
Defines if events timestamps are determined by the system clock or by a pseudo clock controlled by the application. This clock is especially useful for unit testing temporal rules. |
beliefSystem |
simple |
simple, jtms, defeasible |
Defines the type of belief system used by the KieSession. |
As outlined in the former kmodule.xml sample, it is also possible to declaratively create on each KieSession
a file (or a console) logger, one or more WorkItemHandler
s and Calendar
s plus some listeners that can be of 3 different types: ruleRuntimeEventListener, agendaEventListener and processEventListener
Having defined a kmodule.xml like the one in the former sample, it is now possible to simply retrieve the KieBases and KieSessions from the KieContainer using their names.
KieServices kieServices = KieServices.Factory.get();
KieContainer kContainer = kieServices.getKieClasspathContainer();
KieBase kBase1 = kContainer.getKieBase("KBase1");
KieSession kieSession1 = kContainer.newKieSession("KSession2_1");
StatelessKieSession kieSession2 = kContainer.newStatelessKieSession("KSession2_2");
It has to be noted that since KSession2_1 and KSession2_2 are of 2 different types (the first is stateful, while the second is stateless) it is necessary to invoke 2 different methods on the KieContainer
according to their declared type.
If the type of the KieSession
requested to the KieContainer
doesn’t correspond with the one declared in the kmodule.xml file the KieContainer
will throw a RuntimeException
.
Also since a KieBase
and a KieSession
have been flagged as default is it possible to get them from the KieContainer
without passing any name.
KieContainer kContainer = ...
KieBase kBase1 = kContainer.getKieBase(); // returns KBase1
KieSession kieSession1 = kContainer.newKieSession(); // returns KSession2_1
Since a Kie project is also a Maven project the groupId, artifactId and version declared in the pom.xml file are used to generate a ReleaseId
that uniquely identifies this project inside your application.
This allows creation of a new KieContainer from the project by simply passing its ReleaseId
to the KieServices
.
KieServices kieServices = KieServices.Factory.get();
ReleaseId releaseId = kieServices.newReleaseId( "org.acme", "myartifact", "1.0" );
KieContainer kieContainer = kieServices.newKieContainer( releaseId );
KieBase and KiePackage don’t support serialization since Drools 6. You need to build KieBase through KieContainer. On the other hand, KieSession can be marshalled/unmarshalled by KieMashaller. See Marshalling. |
3.2.2.3. Building with Maven
The KIE plugin for Maven ensures that artifact resources are validated and pre-compiled, it is recommended that this is used at all times.
To use the plugin simply add it to the build section of the Maven pom.xml and activate it by using packaging kjar
.
<packaging>kjar</packaging>
...
<build>
<plugins>
<plugin>
<groupId>org.kie</groupId>
<artifactId>kie-maven-plugin</artifactId>
<version>7.74.1.Final</version>
<extensions>true</extensions>
</plugin>
</plugins>
</build>
The plugin comes with support for all the Drools/jBPM knowledge resources.
However, in case you are using specific KIE annotations in your Java classes, like for example @kie.api.Position
, you will need to add compile time dependency on kie-api
into your project.
We recommend to use the provided scope for all the additional KIE dependencies.
That way the kjar stays as lightweight as possible, and not dependant on any particular KIE version.
Building a KIE module without the Maven plugin will copy all the resources, as is, into the resulting JAR. When that JAR is loaded by the runtime, it will attempt to build all the resources then. If there are compilation issues it will return a null KieContainer. It also pushes the compilation overhead to the runtime. In general this is not recommended, and the Maven plugin should always be used.
3.2.2.4. Defining a KieModule programmatically
It is also possible to define the KieBase
s and KieSession
s belonging to a KieModule programmatically instead of the declarative definition in the kmodule.xml file.
The same programmatic API also allows in explicitly adding the file containing the Kie artifacts instead of automatically read them from the resources folder of your project.
To do that it is necessary to create a KieFileSystem
, a sort of virtual file system, and add all the resources contained in your project to it.

Like all other Kie core components you can obtain an instance of the KieFileSystem
from the KieServices
.
The kmodule.xml configuration file must be added to the filesystem.
This is a mandatory step.
Kie also provides a convenient fluent API, implemented by the KieModuleModel
, to programmatically create this file.

To do this in practice it is necessary to create a KieModuleModel
from the KieServices
, configure it with the desired KieBase
s and KieSession
s, convert it in XML and add the XML to the KieFileSystem
.
This process is shown by the following example:
KieServices kieServices = KieServices.Factory.get();
KieModuleModel kieModuleModel = kieServices.newKieModuleModel();
KieBaseModel kieBaseModel1 = kieModuleModel.newKieBaseModel( "KBase1 ")
.setDefault( true )
.setEqualsBehavior( EqualityBehaviorOption.EQUALITY )
.setEventProcessingMode( EventProcessingOption.STREAM );
KieSessionModel ksessionModel1 = kieBaseModel1.newKieSessionModel( "KSession1" )
.setDefault( true )
.setType( KieSessionModel.KieSessionType.STATEFUL )
.setClockType( ClockTypeOption.get("realtime") );
KieFileSystem kfs = kieServices.newKieFileSystem();
kfs.writeKModuleXML(kieModuleModel.toXML());
At this point it is also necessary to add to the KieFileSystem
, through its fluent API, all others Kie artifacts composing your project.
These artifacts have to be added in the same position of a corresponding usual Maven project.
KieFileSystem kfs = ...
kfs.write( "src/main/resources/KBase1/ruleSet1.drl", stringContainingAValidDRL )
.write( "src/main/resources/dtable.xls",
kieServices.getResources().newInputStreamResource( dtableFileStream ) );
This example shows that it is possible to add the Kie artifacts both as plain Strings and as Resource
s.
In the latter case the Resource
s can be created by the KieResources
factory, also provided by the KieServices
.
The KieResources
provides many convenient factory methods to convert an InputStream
, a URL
, a File
, or a String
representing a path of your file system to a Resource
that can be managed by the KieFileSystem
.

Normally the type of a Resource
can be inferred from the extension of the name used to add it to the KieFileSystem
.
However it also possible to not follow the Kie conventions about file extensions and explicitly assign a specific ResourceType
to a Resource
as shown below:
KieFileSystem kfs = ...
kfs.write( "src/main/resources/myDrl.txt",
kieServices.getResources().newInputStreamResource( drlStream )
.setResourceType(ResourceType.DRL) );
Add all the resources to the KieFileSystem
and build it by passing the KieFileSystem
to a KieBuilder

When the contents of a KieFileSystem
are successfully built, the resulting KieModule
is automatically added to the KieRepository
.
The KieRepository
is a singleton acting as a repository for all the available KieModule
s.

After this it is possible to create through the KieServices
a new KieContainer
for that KieModule
using its ReleaseId
.
However, since in this case the KieFileSystem
doesn’t contain any pom.xml file (it is possible to add one using the KieFileSystem.writePomXML
method), Kie cannot determine the ReleaseId
of the KieModule
and assign to it a default one.
This default ReleaseId
can be obtained from the KieRepository
and used to identify the KieModule
inside the KieRepository
itself.
The following example shows this whole process.
KieServices kieServices = KieServices.Factory.get();
KieFileSystem kfs = ...
kieServices.newKieBuilder( kfs ).buildAll();
KieContainer kieContainer = kieServices.newKieContainer(kieServices.getRepository().getDefaultReleaseId());
At this point it is possible to get KieBase
s and create new KieSession
s from this KieContainer
exactly in the same way as in the case of a KieContainer
created directly from the classpath.
It is a best practice to check the compilation results.
The KieBuilder
reports compilation results of 3 different severities: ERROR, WARNING and INFO.
An ERROR indicates that the compilation of the project failed and in the case no KieModule
is produced and nothing is added to the KieRepository
.
WARNING and INFO results can be ignored, but are available for inspection.
KieBuilder kieBuilder = kieServices.newKieBuilder( kfs ).buildAll();
assertEquals( 0, kieBuilder.getResults().getMessages( Message.Level.ERROR ).size() );
3.2.2.5. Changing the Default Build Result Severity
In some cases, it is possible to change the default severity of a type of build result. For instance, when a new rule with the same name of an existing rule is added to a package, the default behavior is to replace the old rule by the new rule and report it as an INFO. This is probably ideal for most use cases, but in some deployments the user might want to prevent the rule update and report it as an error.
Changing the default severity for a result type, configured like any other option in Drools, can be done by API calls, system properties or configuration files. As of this version, Drools supports configurable result severity for rule updates and function updates. To configure it using system properties or configuration files, the user has to use the following properties:
// sets the severity of rule updates
drools.kbuilder.severity.duplicateRule = <INFO|WARNING|ERROR>
// sets the severity of function updates
drools.kbuilder.severity.duplicateFunction = <INFO|WARNING|ERROR>
3.2.3. Deploying
3.2.3.1. KieBase
The KieBase
is a repository of all the application’s knowledge definitions.
It will contain rules, processes, functions, and type models.
The KieBase
itself does not contain data; instead, sessions are created from the KieBase
into which data can be inserted and from which process instances may be started.
The KieBase
can be obtained from the KieContainer
containing the KieModule
where the KieBase
has been defined.

Sometimes, for instance in a OSGi environment, the KieBase
needs to resolve types that are not in the default class loader.
In this case it will be necessary to create a KieBaseConfiguration
with an additional class loader and pass it to KieContainer
when creating a new KieBase
from it.
KieServices kieServices = KieServices.Factory.get();
KieBaseConfiguration kbaseConf = kieServices.newKieBaseConfiguration( null, MyType.class.getClassLoader() );
KieBase kbase = kieContainer.newKieBase( kbaseConf );
3.2.3.2. KieSessions and KieBase Modifications
KieSessions will be discussed in more detail in section "Running". The KieBase
creates and returns KieSession
objects, and it may optionally keep references to those.
When KieBase
modifications occur those modifications are applied against the data in the sessions.
This reference is a weak reference and it is also optional, which is controlled by a boolean flag.
3.2.3.3. KieScanner
The KieScanner
allows continuous monitoring of your Maven repository to check whether a new release of a Kie project has been installed.
A new release is deployed in the KieContainer
wrapping that project.
The use of the KieScanner
requires kie-ci.jar to be on the classpath.

A KieScanner
can be registered on a KieContainer
as in the following example.
KieServices kieServices = KieServices.Factory.get();
ReleaseId releaseId = kieServices.newReleaseId( "org.acme", "myartifact", "1.0-SNAPSHOT" );
KieContainer kContainer = kieServices.newKieContainer( releaseId );
KieScanner kScanner = kieServices.newKieScanner( kContainer );
// Start the KieScanner polling the Maven repository every 10 seconds
kScanner.start( 10000L );
In this example the KieScanner
is configured to run with a fixed time interval, but it is also possible to run it on demand by invoking the scanNow()
method on it.
If the KieScanner
finds, in the Maven repository, an updated version of the Kie project used by that KieContainer
it automatically downloads the new version and triggers an incremental build of the new project.
At this point, existing KieBase
s and KieSession
s under the control of KieContainer
will get automatically upgraded with it - specifically, those KieBase
s obtained with getKieBase()
along with their related KieSession
s, and any KieSession
obtained directly with KieContainer.newKieSession()
thus referencing the default KieBase
.
Additionally, from this moment on, all the new KieBase
s and KieSession
s created from that KieContainer
will use the new project version.
Please notice however any existing KieBase
which was obtained via newKieBase()
before the KieScanner upgrade, and any of its related KieSession
s, will not get automatically upgraded; this is because KieBase
s obtained via newKieBase()
are not under the direct control of the KieContainer
.
The KieScanner
will only pickup changes to deployed jars if it is using a SNAPSHOT, version range, the LATEST, or the RELEASE setting.
Fixed versions will not automatically update at runtime.
In case you don’t want to install a maven repository, it is also possible to have a KieScanner
that works
by simply fetching update from a folder of a plain file system. You can create such a KieScanner
as simply as
KieServices kieServices = KieServices.Factory.get();
KieScanner kScanner = kieServices.newKieScanner( kContainer, "/myrepo/kjars" );
where "/myrepo/kjars" will be the folder where the KieScanner
will look for kjar updates. The jar files placed in this folder
have to follow the maven convention and then have to be a name in the form {artifactId}-{versionId}.jar
3.2.3.4. Maven Versions and Dependencies
Maven supports a number of mechanisms to manage versioning and dependencies within applications. Modules can be published with specific version numbers, or they can use the SNAPSHOT suffix. Dependencies can specify version ranges to consume, or take advantage of SNAPSHOT mechanism.
StackOverflow provides a very good description for this, which is reproduced below.
Since Maven 3.x metaversions RELEASE and LATEST are no longer supported for the sake of reproducible builds. |
See the POM Syntax section of the Maven book for more details.
Here’s an example illustrating the various options. In the Maven repository, com.foo:my-foo has the following metadata:
<metadata>
<groupId>com.foo</groupId>
<artifactId>my-foo</artifactId>
<version>2.0.0</version>
<versioning>
<release>1.1.1</release>
<versions>
<version>1.0</version>
<version>1.0.1</version>
<version>1.1</version>
<version>1.1.1</version>
<version>2.0.0</version>
</versions>
<lastUpdated>20090722140000</lastUpdated>
</versioning>
</metadata>
If a dependency on that artifact is required, you have the following options (other version ranges can be specified of course, just showing the relevant ones here): Declare an exact version (will always resolve to 1.0.1):
<version>[1.0.1]</version>
Declare an explicit version (will always resolve to 1.0.1 unless a collision occurs, when Maven will select a matching version):
<version>1.0.1</version>
Declare a version range for all 1.x (will currently resolve to 1.1.1):
<version>[1.0.0,2.0.0)</version>
Declare an open-ended version range (will resolve to 2.0.0):
<version>[1.0.0,)</version>
Declare the version as LATEST (will resolve to 2.0.0):
<version>LATEST</version>
Declare the version as RELEASE (will resolve to 1.1.1):
<version>RELEASE</version>
Note that by default your own deployments will update the "latest" entry in the Maven metadata, but to update the "release" entry, you need to activate the "release-profile" from the Maven super POM. You can do this with either "-Prelease-profile" or "-DperformRelease=true"
3.2.3.5. Settings.xml and Remote Repository Setup
The maven settings.xml is used to configure Maven execution. Detailed instructions can be found at the Maven website:
The settings.xml file can be located in 3 locations, the actual settings used is a merge of those 3 locations.
-
The Maven install:
$M2_HOME/conf/settings.xml
-
A user’s install:
${user.home}/.m2/settings.xml
-
Folder location specified by the system property
kie.maven.settings.custom
The settings.xml is used to specify the location of remote repositories. It is important that you activate the profile that specifies the remote repository, typically this can be done using "activeByDefault":
<profiles>
<profile>
<id>profile-1</id>
<activation>
<activeByDefault>true</activeByDefault>
</activation>
...
</profile>
</profiles>
Maven provides detailed documentation on using multiple remote repositories:
3.2.4. Running
3.2.4.1. KieBase
The KieBase
is a repository of all the application’s knowledge definitions.
It will contain rules, processes, functions, and type models.
The KieBase
itself does not contain data; instead, sessions are created from the KieBase
into which data can be inserted and from which process instances may be started.
The KieBase
can be obtained from the KieContainer
containing the KieModule
where the KieBase
has been defined.
KieBase kBase = kContainer.getKieBase();
3.2.4.2. KieSession
The KieSession
stores and executes on the runtime data.
It is created from the KieBase
.

KieSession ksession = kbase.newKieSession();
3.2.4.3. KieRuntime
KieRuntime
The KieRuntime
provides methods that are applicable to both rules and processes, such as setting globals and registering channels.
("Exit point" is an obsolete synonym for "channel".)

Globals are named objects that are made visible to the Drools engine, but in a way that is fundamentally different from the one for facts: changes in the object backing a global do not trigger reevaluation of rules. Still, globals are useful for providing static information, as an object offering services that are used in the RHS of a rule, or as a means to return objects from the Drools engine. When you use a global on the LHS of a rule, make sure it is immutable, or, at least, don’t expect changes to have any effect on the behavior of your rules.
A global must be declared in a rules file, and then it needs to be backed up with a Java object.
global java.util.List list
With the KIE base now aware of the global identifier and its type, it is now possible to call ksession.setGlobal()
with the global’s name and an object, for any session, to associate the object with the global.
Failure to declare the global type and identifier in DRL code will result in an exception being thrown from this call.
List<String> list = new ArrayList<>();
ksession.setGlobal("list", list);
Make sure to set any global before it is used in the evaluation of a rule.
Failure to do so results in a NullPointerException
.
3.2.4.4. Event Model
The event package provides means to be notified of Drools engine events, including rules firing, objects being asserted, etc. This allows separation of logging and auditing activities from the main part of your application (and the rules).
The KieRuntimeEventManager
interface is implemented by the KieRuntime
which provides two interfaces, RuleRuntimeEventManager
and ProcessEventManager
.
We will only cover the RuleRuntimeEventManager
here.

The RuleRuntimeEventManager
allows for listeners to be added and removed, so that events for the working memory and the agenda can be listened to.

The following code snippet shows how a simple agenda listener is declared and attached to a session. It will print matches after they have fired.
ksession.addEventListener( new DefaultAgendaEventListener() {
public void afterMatchFired(AfterMatchFiredEvent event) {
super.afterMatchFired( event );
System.out.println( event );
}
});
Drools also provides DebugRuleRuntimeEventListener
and DebugAgendaEventListener
which implement each method with a debug print statement.
To print all Working Memory events, you add a listener like this:
ksession.addEventListener( new DebugRuleRuntimeEventListener() );
All emitted events implement the KieRuntimeEvent
interface which can be used to retrieve the actual KnowlegeRuntime
the event originated from.

The events currently supported are:
-
MatchCreatedEvent
-
MatchCancelledEvent
-
BeforeMatchFiredEvent
-
AfterMatchFiredEvent
-
AgendaGroupPushedEvent
-
AgendaGroupPoppedEvent
-
ObjectInsertEvent
-
ObjectDeletedEvent
-
ObjectUpdatedEvent
-
ProcessCompletedEvent
-
ProcessNodeLeftEvent
-
ProcessNodeTriggeredEvent
-
ProcessStartEvent
3.2.4.5. KieRuntimeLogger
The KieRuntimeLogger uses the comprehensive event system in Drools to create an audit log that can be used to log the execution of an application for later inspection, using tools such as the Eclipse audit viewer.

KieRuntimeLogger logger =
KieServices.Factory.get().getLoggers().newFileLogger(ksession, "logdir/mylogfile");
...
logger.close();
3.2.4.6. Commands and the CommandExecutor
KIE has the concept of stateful or stateless sessions. Stateful sessions have already been covered, which use the standard KieRuntime, and can be worked with iteratively over time. Stateless is a one-off execution of a KieRuntime with a provided data set. It may return some results, with the session being disposed at the end, prohibiting further iterative interactions. You can think of stateless as treating an engine like a function call with optional return results.
The foundation for this is the CommandExecutor
interface, which both the stateful and stateless interfaces extend.
This returns an ExecutionResults
:


The CommandExecutor
allows for commands to be executed on those sessions, the only difference being that the StatelessKieSession executes fireAllRules()
at the end before disposing the session.
The commands can be created using the CommandExecutor
.The Javadocs provide the full list of the allowed commands using the CommandExecutor
.
setGlobal and getGlobal are two commands relevant to both Drools and jBPM.
Set Global calls setGlobal underneath.
The optional boolean indicates whether the command should return the global’s value as part of the ExecutionResults
.
If true it uses the same name as the global name.
A String can be used instead of the boolean, if an alternative name is desired.
StatelessKieSession ksession = kbase.newStatelessKieSession();
ExecutionResults bresults =
ksession.execute( CommandFactory.newSetGlobal( "stilton", new Cheese( "stilton" ), true);
Cheese stilton = bresults.getValue( "stilton" );
Allows an existing global to be returned. The second optional String argument allows for an alternative return name.
StatelessKieSession ksession = kbase.newStatelessKieSession();
ExecutionResults bresults =
ksession.execute( CommandFactory.getGlobal( "stilton" );
Cheese stilton = bresults.getValue( "stilton" );
All the previous examples execute single commands.
The BatchExecution
represents a composite command, created from a list of commands.
It will iterate over the list and execute each command in turn.
This means you can insert some objects, start a process, call fireAllRules and execute a query, all in a single execute(…)
call, which is quite powerful.
The StatelessKieSession will execute fireAllRules()
automatically at the end.
However the keen-eyed reader probably has already noticed the FireAllRules
command and wondered how that works with a StatelessKieSession.
The FireAllRules
command is allowed, and using it will disable the automatic execution at the end; think of using it as a sort of manual override function.
Any command, in the batch, that has an out identifier set will add its results to the returned ExecutionResults
instance.
Let’s look at a simple example to see how this works.
The example presented includes command from the Drools and jBPM, for the sake of illustration.
They are covered in more detail in the Drool and jBPM specific sections.
StatelessKieSession ksession = kbase.newStatelessKieSession();
List cmds = new ArrayList();
cmds.add( CommandFactory.newInsertObject( new Cheese( "stilton", 1), "stilton") );
cmds.add( CommandFactory.newStartProcess( "process cheeses" ) );
cmds.add( CommandFactory.newQuery( "cheeses" ) );
ExecutionResults bresults = ksession.execute( CommandFactory.newBatchExecution( cmds ) );
Cheese stilton = ( Cheese ) bresults.getValue( "stilton" );
QueryResults qresults = ( QueryResults ) bresults.getValue( "cheeses" );
In the previous example multiple commands are executed, two of which populate the ExecutionResults
.
The query command defaults to use the same identifier as the query name, but it can also be mapped to a different identifier.
All commands support XML and JSON marshalling using XStream, as well as JAXB marshalling. This is covered in Drools commands.
3.2.4.7. StatelessKieSession
The StatelessKieSession
wraps the KieSession
, instead of extending it.
Its main focus is on the decision service type scenarios.
It avoids the need to call dispose()
.
Stateless sessions do not support iterative insertions and the method call fireAllRules()
from Java code; the act of calling execute()
is a single-shot method that will internally instantiate a KieSession
, add all the user data and execute user commands, call fireAllRules()
, and then call dispose()
.
While the main way to work with this class is via the BatchExecution
(a subinterface of Command
) as supported by the CommandExecutor
interface, two convenience methods are provided for when simple object insertion is all that’s required.
The CommandExecutor
and BatchExecution
are talked about in detail in their own section.

Our simple example shows a stateless session executing a given collection of Java objects using the convenience API. It will iterate the collection, inserting each element in turn.
StatelessKieSession ksession = kbase.newStatelessKieSession();
ksession.execute( collection );
If this was done as a single Command it would be as follows:
ksession.execute( CommandFactory.newInsertElements( collection ) );
If you wanted to insert the collection itself, and the collection’s individual elements, then CommandFactory.newInsert(collection)
would do the job.
Methods of the CommandFactory
create the supported commands, all of which can be marshalled using XStream and the BatchExecutionHelper
. BatchExecutionHelper
provides details on the XML format as well as how to use Drools Pipeline to automate the marshalling of BatchExecution
and ExecutionResults
.
StatelessKieSession
supports globals, scoped in a number of ways.
We cover the non-command way first, as commands are scoped to a specific execution call.
Globals can be resolved in three ways.
-
The StatelessKieSession method
getGlobals()
returns a Globals instance which provides access to the session’s globals. These are used for all execution calls. Exercise caution regarding mutable globals because execution calls can be executing simultaneously in different threads.Example 26. Session scoped globalStatelessKieSession ksession = kbase.newStatelessKieSession(); // Set a global hbnSession, that can be used for DB interactions in the rules. ksession.setGlobal( "hbnSession", hibernateSession ); // Execute while being able to resolve the "hbnSession" identifier. ksession.execute( collection );
-
Using a delegate is another way of global resolution. Assigning a value to a global (with
setGlobal(String, Object)
) results in the value being stored in an internal collection mapping identifiers to values. Identifiers in this internal collection will have priority over any supplied delegate. Only if an identifier cannot be found in this internal collection, the delegate global (if any) will be used. -
The third way of resolving globals is to have execution scoped globals. Here, a
Command
to set a global is passed to theCommandExecutor
.
The CommandExecutor
interface also offers the ability to export data via "out" parameters.
Inserted facts, globals and query results can all be returned.
// Set up a list of commands
List cmds = new ArrayList();
cmds.add( CommandFactory.newSetGlobal( "list1", new ArrayList(), true ) );
cmds.add( CommandFactory.newInsert( new Person( "jon", 102 ), "person" ) );
cmds.add( CommandFactory.newQuery( "Get People", "getPeople" ) );
// Execute the list
ExecutionResults results =
ksession.execute( CommandFactory.newBatchExecution( cmds ) );
// Retrieve the ArrayList
results.getValue( "list1" );
// Retrieve the inserted Person fact
results.getValue( "person" );
// Retrieve the query as a QueryResults instance.
results.getValue( "Get People" );
3.2.4.8. Marshalling
The KieMarshallers
are used to marshal and unmarshal KieSessions.

An instance of the KieMarshallers
can be retrieved from the KieServices
.
A simple example is shown below:
// ksession is the KieSession
// kbase is the KieBase
ByteArrayOutputStream baos = new ByteArrayOutputStream();
Marshaller marshaller = KieServices.Factory.get().getMarshallers().newMarshaller( kbase );
marshaller.marshall( baos, ksession );
baos.close();
However, with marshalling, you will need more flexibility when dealing with referenced user data.
To achieve this use the ObjectMarshallingStrategy
interface.
Two implementations are provided, but users can implement their own.
The two supplied strategies are IdentityMarshallingStrategy
and SerializeMarshallingStrategy
. SerializeMarshallingStrategy
is the default, as shown in the example above, and it just calls the Serializable
or Externalizable
methods on a user instance. IdentityMarshallingStrategy
creates an integer id for each user object and stores them in a Map, while the id is written to the stream.
When unmarshalling it accesses the IdentityMarshallingStrategy
map to retrieve the instance.
This means that if you use the IdentityMarshallingStrategy
, it is stateful for the life of the Marshaller instance and will create ids and keep references to all objects that it attempts to marshal.
Below is the code to use an Identity Marshalling Strategy.
ByteArrayOutputStream baos = new ByteArrayOutputStream();
KieMarshallers kMarshallers = KieServices.Factory.get().getMarshallers()
ObjectMarshallingStrategy oms = kMarshallers.newIdentityMarshallingStrategy()
Marshaller marshaller =
kMarshallers.newMarshaller( kbase, new ObjectMarshallingStrategy[]{ oms } );
marshaller.marshall( baos, ksession );
baos.close();
In most cases, a single strategy is insufficient.
For added flexibility, the ObjectMarshallingStrategyAcceptor
interface can be used.
This Marshaller has a chain of strategies, and while reading or writing a user object it iterates the strategies asking if they accept responsibility for marshalling the user object.
One of the provided implementations is ClassFilterAcceptor
.
This allows strings and wild cards to be used to match class names.
The default is ".", so in the previous example the Identity Marshalling Strategy is used which has a default "." acceptor.
Assuming that we want to serialize all classes except for one given package, where we will use identity lookup, we could do the following:
ByteArrayOutputStream baos = new ByteArrayOutputStream();
KieMarshallers kMarshallers = KieServices.Factory.get().getMarshallers()
ObjectMarshallingStrategyAcceptor identityAcceptor =
kMarshallers.newClassFilterAcceptor( new String[] { "org.domain.pkg1.*" } );
ObjectMarshallingStrategy identityStrategy =
kMarshallers.newIdentityMarshallingStrategy( identityAcceptor );
ObjectMarshallingStrategy sms = kMarshallers.newSerializeMarshallingStrategy();
Marshaller marshaller =
kMarshallers.newMarshaller( kbase,
new ObjectMarshallingStrategy[]{ identityStrategy, sms } );
marshaller.marshall( baos, ksession );
baos.close();
Note that the acceptance checking order is in the natural order of the supplied elements.
3.2.4.9. Persistence and Transactions
Longterm out of the box persistence with Java Persistence API (JPA) is possible with Drools. It is necessary to have some implementation of the Java Transaction API (JTA) installed. For development purposes the Bitronix Transaction Manager is suggested, as it’s simple to set up and works embedded, but for production use JBoss Transactions is recommended.
KieServices kieServices = KieServices.Factory.get();
Environment env = kieServices.newEnvironment();
env.set( EnvironmentName.ENTITY_MANAGER_FACTORY,
Persistence.createEntityManagerFactory( "emf-name" ) );
env.set( EnvironmentName.TRANSACTION_MANAGER,
TransactionManagerServices.getTransactionManager() );
// KieSessionConfiguration may be null, and a default will be used
KieSession ksession =
kieServices.getStoreServices().newKieSession( kbase, null, env );
int sessionId = ksession.getId();
UserTransaction ut =
(UserTransaction) new InitialContext().lookup( "java:comp/UserTransaction" );
ut.begin();
ksession.insert( data1 );
ksession.insert( data2 );
ksession.startProcess( "process1" );
ut.commit();
To use a JPA, the Environment must be set with both the EntityManagerFactory
and the TransactionManager
.
If rollback occurs the ksession state is also rolled back, hence it is possible to continue to use it after a rollback.
To load a previously persisted KieSession you’ll need the id, as shown below:
KieSession ksession =
kieServices.getStoreServices().loadKieSession( sessionId, kbase, null, env );
To enable persistence several classes must be added to your persistence.xml, as in the example below:
<persistence-unit name="org.drools.persistence.jpa" transaction-type="JTA">
<provider>org.hibernate.ejb.HibernatePersistence</provider>
<jta-data-source>jdbc/BitronixJTADataSource</jta-data-source>
<class>org.drools.persistence.info.SessionInfo</class>
<class>org.drools.persistence.info.WorkItemInfo</class>
<properties>
<property name="hibernate.dialect" value="org.hibernate.dialect.H2Dialect"/>
<property name="hibernate.max_fetch_depth" value="3"/>
<property name="hibernate.hbm2ddl.auto" value="update" />
<property name="hibernate.show_sql" value="true" />
<property name="hibernate.transaction.manager_lookup_class"
value="org.hibernate.transaction.BTMTransactionManagerLookup" />
</properties>
</persistence-unit>
The jdbc JTA data source would have to be configured first. Bitronix provides a number of ways of doing this, and its documentation should be consulted for details. For a quick start, here is the programmatic approach:
PoolingDataSource ds = new PoolingDataSource();
ds.setUniqueName( "jdbc/BitronixJTADataSource" );
ds.setClassName( "org.h2.jdbcx.JdbcDataSource" );
ds.setMaxPoolSize( 3 );
ds.setAllowLocalTransactions( true );
ds.getDriverProperties().put( "user", "sa" );
ds.getDriverProperties().put( "password", "sasa" );
ds.getDriverProperties().put( "URL", "jdbc:h2:mem:mydb" );
ds.init();
Bitronix also provides a simple embedded JNDI service, ideal for testing. To use it, add a jndi.properties file to your META-INF folder and add the following line to it:
java.naming.factory.initial=bitronix.tm.jndi.BitronixInitialContextFactory
3.2.5. Installation and Deployment Cheat Sheets


3.2.6. Build, Deploy and Utilize Examples
The best way to learn the new build system is by example. The source project "drools-examples-api" contains a number of examples, and can be found at GitHub:
Each example is described below, the order starts with the simplest (most of the options are defaulted) and working its way up to more complex use cases.
The Deploy use cases shown below all involve mvn install
.
Remote deployment of JARs in Maven is well covered in Maven literature.
Utilize refers to the initial act of loading the resources and providing access to the KIE runtimes.
Whereas Run refers to the act of interacting with those runtimes.
3.2.6.1. Default KieSession
-
Project: default-kesession.
-
Summary: Empty kmodule.xml KieModule on the classpath that includes all resources in a single default KieBase. The example shows the retrieval of the default KieSession from the classpath.
An empty kmodule.xml will produce a single KieBase that includes all files found under resources path, be it DRL, BPMN2, XLS etc. That single KieBase is the default and also includes a single default KieSession. Default means they can be created without knowing their names.
<kmodule xmlns="http://www.drools.org/xsd/kmodule"> </kmodule>
mvn install
ks.getKieClasspathContainer() returns the KieContainer that contains the KieBases deployed onto the environment classpath. kContainer.newKieSession() creates the default KieSession. Notice that you no longer need to look up the KieBase, in order to create the KieSession. The KieSession knows which KieBase it’s associated with, and use that, which in this case is the default KieBase.
KieServices ks = KieServices.Factory.get();
KieContainer kContainer = ks.getKieClasspathContainer();
KieSession kSession = kContainer.newKieSession();
kSession.setGlobal("out", out);
kSession.insert(new Message("Dave", "Hello, HAL. Do you read me, HAL?"));
kSession.fireAllRules();
3.2.6.2. Named KieSession
-
Project: named-kiesession.
-
Summary: kmodule.xml that has one named KieBase and one named KieSession. The examples shows the retrieval of the named KieSession from the classpath.
kmodule.xml will produce a single named KieBase, 'kbase1' that includes all files found under resources path, be it DRL, BPMN2, XLS etc. KieSession 'ksession1' is associated with that KieBase and can be created by name.
<kmodule xmlns="http://www.drools.org/xsd/kmodule">
<kbase name="kbase1">
<ksession name="ksession1"/>
</kbase>
</kmodule>
mvn install
ks.getKieClasspathContainer() returns the KieContainer that contains the KieBases deployed onto the environment classpath. This time the KieSession uses the name 'ksession1'. You do not need to lookup the KieBase first, as it knows which KieBase 'ksession1' is assocaited with.
KieServices ks = KieServices.Factory.get();
KieContainer kContainer = ks.getKieClasspathContainer();
KieSession kSession = kContainer.newKieSession("ksession1");
kSession.setGlobal("out", out);
kSession.insert(new Message("Dave", "Hello, HAL. Do you read me, HAL?"));
kSession.fireAllRules();
3.2.6.3. KieBase Inheritance
-
Project: kiebase-inclusion.
-
Summary: 'kmodule.xml' demonstrates that one KieBase can include the resources from another KieBase, from another KieModule. In this case it inherits the named KieBase from the 'name-kiesession' example. The included KieBase can be from the current KieModule or any other KieModule that is in the pom.xml dependency list.
kmodule.xml will produce a single named KieBase, 'kbase2' that includes all files found under resources path, be it DRL, BPMN2, XLS etc. Further it will include all the resources found from the KieBase 'kbase1', due to the use of the 'includes' attribute. KieSession 'ksession2' is associated with that KieBase and can be created by name.
<kbase name="kbase2" includes="kbase1">
<ksession name="ksession2"/>
</kbase>
This example requires that the previous example, 'named-kiesession', is built and installed to the local Maven repository first. Once installed it can be included as a dependency, using the standard Maven <dependencies> element.
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>org.drools</groupId>
<artifactId>drools-examples-api</artifactId>
<version>6.0.0/version>
</parent>
<artifactId>kiebase-inclusion</artifactId>
<name>Drools API examples - KieBase Inclusion</name>
<dependencies>
<dependency>
<groupId>org.drools</groupId>
<artifactId>drools-compiler</artifactId>
</dependency>
<dependency>
<groupId>org.drools</groupId>
<artifactId>named-kiesession</artifactId>
<version>6.0.0</version>
</dependency>
</dependencies>
</project>
Once 'named-kiesession' is built and installed this example can be built and installed as normal. Again the act of installing, will force the unit tests to run, demonstrating the use case.
mvn install
ks.getKieClasspathContainer() returns the KieContainer that contains the KieBases deployed onto the environment classpath. This time the KieSession uses the name 'ksession2'. You do not need to lookup the KieBase first, as it knows which KieBase 'ksession1' is assocaited with. Notice two rules fire this time, showing that KieBase 'kbase2' has included the resources from the dependency KieBase 'kbase1'.
KieServices ks = KieServices.Factory.get();
KieContainer kContainer = ks.getKieClasspathContainer();
KieSession kSession = kContainer.newKieSession("ksession2");
kSession.setGlobal("out", out);
kSession.insert(new Message("Dave", "Hello, HAL. Do you read me, HAL?"));
kSession.fireAllRules();
kSession.insert(new Message("Dave", "Open the pod bay doors, HAL."));
kSession.fireAllRules();
3.2.6.4. Multiple KieBases
-
Project: 'multiple-kbases.
-
Summary: Demonstrates that the 'kmodule.xml' can contain any number of KieBase or KieSession declarations. Introduces the 'packages' attribute to select the folders for the resources to be included in the KieBase.
kmodule.xml produces 6 different named KieBases. 'kbase1' includes all resources from the KieModule. The other KieBases include resources from other selected folders, via the 'packages' attribute. Note the use of wildcard '*', to select this package and all packages below it.
<kmodule xmlns="http://www.drools.org/xsd/kmodule">
<kbase name="kbase1">
<ksession name="ksession1"/>
</kbase>
<kbase name="kbase2" packages="org.some.pkg">
<ksession name="ksession2"/>
</kbase>
<kbase name="kbase3" includes="kbase2" packages="org.some.pkg2">
<ksession name="ksession3"/>
</kbase>
<kbase name="kbase4" packages="org.some.pkg, org.other.pkg">
<ksession name="ksession4"/>
</kbase>
<kbase name="kbase5" packages="org.*">
<ksession name="ksession5"/>
</kbase>
<kbase name="kbase6" packages="org.some.*">
<ksession name="ksession6"/>
</kbase>
</kmodule>
mvn install
Only part of the example is included below, as there is a test method per KieSession, but each one is a repetition of the other, with different list expectations.
@Test
public void testSimpleKieBase() {
List<Integer> list = useKieSession("ksession1");
// no packages imported means import everything
assertEquals(4, list.size());
assertTrue( list.containsAll( asList(0, 1, 2, 3) ) );
}
//.. other tests for ksession2 to ksession6 here
private List<Integer> useKieSession(String name) {
KieServices ks = KieServices.Factory.get();
KieContainer kContainer = ks.getKieClasspathContainer();
KieSession kSession = kContainer.newKieSession(name);
List<Integer> list = new ArrayList<Integer>();
kSession.setGlobal("list", list);
kSession.insert(1);
kSession.fireAllRules();
return list;
}
3.2.6.5. KieContainer from KieRepository
-
Project: kcontainer-from-repository
-
Summary: The project does not contain a kmodule.xml, nor does the pom.xml have any dependencies for other KieModules. Instead the Java code demonstrates the loading of a dynamic KieModule from a Maven repository.
The pom.xml must include kie-ci as a dependency, to ensure Maven is available at runtime. As this uses Maven under the hood you can also use the standard Maven settings.xml file.
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>org.drools</groupId>
<artifactId>drools-examples-api</artifactId>
<version>6.0.0</version>
</parent>
<artifactId>kiecontainer-from-kierepo</artifactId>
<name>Drools API examples - KieContainer from KieRepo</name>
<dependencies>
<dependency>
<groupId>org.kie</groupId>
<artifactId>kie-ci</artifactId>
</dependency>
</dependencies>
</project>
mvn install
In the previous examples the classpath KieContainer used. This example creates a dynamic KieContainer as specified by the ReleaseId. The ReleaseId uses Maven conventions for group id, artifact id and version. It also obeys LATEST and SNAPSHOT for versions.
KieServices ks = KieServices.Factory.get();
// Install example1 in the local Maven repo before to do this
KieContainer kContainer = ks.newKieContainer(ks.newReleaseId("org.drools", "named-kiesession", "6.0.0-SNAPSHOT"));
KieSession kSession = kContainer.newKieSession("ksession1");
kSession.setGlobal("out", out);
Object msg1 = createMessage(kContainer, "Dave", "Hello, HAL. Do you read me, HAL?");
kSession.insert(msg1);
kSession.fireAllRules();
3.2.6.6. Default KieSession from File
-
Project: default-kiesession-from-file
-
Summary: Dynamic KieModules can also be loaded from any Resource location. The loaded KieModule provides default KieBase and KieSession definitions.
No kmodue.xml file exists. The project 'default-kiesession' must be built first, so that the resulting JAR, in the target folder, can be referenced as a File.
mvn install
Any KieModule can be loaded from a Resource location and added to the KieRepository. Once deployed in the KieRepository it can be resolved via its ReleaseId. Note neither Maven or kie-ci are needed here. It will not set up a transitive dependency parent classloader.
KieServices ks = KieServices.Factory.get();
KieRepository kr = ks.getRepository();
KieModule kModule = kr.addKieModule(ks.getResources().newFileSystemResource(getFile("default-kiesession")));
KieContainer kContainer = ks.newKieContainer(kModule.getReleaseId());
KieSession kSession = kContainer.newKieSession();
kSession.setGlobal("out", out);
Object msg1 = createMessage(kContainer, "Dave", "Hello, HAL. Do you read me, HAL?");
kSession.insert(msg1);
kSession.fireAllRules();
3.2.6.7. Named KieSession from File
-
Project: named-kiesession-from-file
-
Summary: Dynamic KieModules can also be loaded from any Resource location. The loaded KieModule provides named KieBase and KieSession definitions.
No kmodue.xml file exists. The project 'named-kiesession' must be built first, so that the resulting JAR, in the target folder, can be referenced as a File.
mvn install
Any KieModule can be loaded from a Resource location and added to the KieRepository. Once in the KieRepository it can be resolved via its ReleaseId. Note neither Maven or kie-ci are needed here. It will not setup a transitive dependency parent classloader.
KieServices ks = KieServices.Factory.get();
KieRepository kr = ks.getRepository();
KieModule kModule = kr.addKieModule(ks.getResources().newFileSystemResource(getFile("named-kiesession")));
KieContainer kContainer = ks.newKieContainer(kModule.getReleaseId());
KieSession kSession = kContainer.newKieSession("ksession1");
kSession.setGlobal("out", out);
Object msg1 = createMessage(kContainer, "Dave", "Hello, HAL. Do you read me, HAL?");
kSession.insert(msg1);
kSession.fireAllRules();
3.2.6.8. KieModule with Dependent KieModule
-
Project: kie-module-form-multiple-files
-
Summary: Programmatically provide the list of dependant KieModules, without using Maven to resolve anything.
No kmodue.xml file exists. The projects 'named-kiesession' and 'kiebase-include' must be built first, so that the resulting JARs, in the target folders, can be referenced as Files.
mvn install
Creates two resources. One is for the main KieModule 'exRes1' the other is for the dependency 'exRes2'. Even though kie-ci is not present and thus Maven is not available to resolve the dependencies, this shows how you can manually specify the dependent KieModules, for the vararg.
KieServices ks = KieServices.Factory.get();
KieRepository kr = ks.getRepository();
Resource ex1Res = ks.getResources().newFileSystemResource(getFile("kiebase-inclusion"));
Resource ex2Res = ks.getResources().newFileSystemResource(getFile("named-kiesession"));
KieModule kModule = kr.addKieModule(ex1Res, ex2Res);
KieContainer kContainer = ks.newKieContainer(kModule.getReleaseId());
KieSession kSession = kContainer.newKieSession("ksession2");
kSession.setGlobal("out", out);
Object msg1 = createMessage(kContainer, "Dave", "Hello, HAL. Do you read me, HAL?");
kSession.insert(msg1);
kSession.fireAllRules();
Object msg2 = createMessage(kContainer, "Dave", "Open the pod bay doors, HAL.");
kSession.insert(msg2);
kSession.fireAllRules();
3.2.6.9. Programmatically build a Simple KieModule with Defaults
-
Project: kiemoduelmodel-example
-
Summary: Programmatically build a KieModule from just a single file. The POM and models are all defaulted. This is the quickest out of the box approach, but should not be added to a Maven repository.
mvn install
This programmatically builds a KieModule. It populates the model that represents the ReleaseId and kmodule.xml, and it adds the relevant resources. A pom.xml is generated from the ReleaseId.
KieServices ks = KieServices.Factory.get();
KieRepository kr = ks.getRepository();
KieFileSystem kfs = ks.newKieFileSystem();
kfs.write("src/main/resources/org/kie/example5/HAL5.drl", getRule());
KieBuilder kb = ks.newKieBuilder(kfs);
kb.buildAll(); // kieModule is automatically deployed to KieRepository if successfully built.
if (kb.getResults().hasMessages(Level.ERROR)) {
throw new RuntimeException("Build Errors:\n" + kb.getResults().toString());
}
KieContainer kContainer = ks.newKieContainer(kr.getDefaultReleaseId());
KieSession kSession = kContainer.newKieSession();
kSession.setGlobal("out", out);
kSession.insert(new Message("Dave", "Hello, HAL. Do you read me, HAL?"));
kSession.fireAllRules();
3.2.6.10. Programmatically build a KieModule using Meta Models
-
Project: kiemoduelmodel-example
-
Summary: Programmatically build a KieModule, by creating its kmodule.xml meta model resources.
mvn install
This programmatically builds a KieModule. It populates the model that represents the ReleaseId and kmodule.xml, as well as add the relevant resources. A pom.xml is generated from the ReleaseId.
KieServices ks = KieServices.Factory.get();
KieFileSystem kfs = ks.newKieFileSystem();
Resource ex1Res = ks.getResources().newFileSystemResource(getFile("named-kiesession"));
Resource ex2Res = ks.getResources().newFileSystemResource(getFile("kiebase-inclusion"));
ReleaseId rid = ks.newReleaseId("org.drools", "kiemodulemodel-example", "6.0.0-SNAPSHOT");
kfs.generateAndWritePomXML(rid);
KieModuleModel kModuleModel = ks.newKieModuleModel();
kModuleModel.newKieBaseModel("kiemodulemodel")
.addInclude("kiebase1")
.addInclude("kiebase2")
.newKieSessionModel("ksession6");
kfs.writeKModuleXML(kModuleModel.toXML());
kfs.write("src/main/resources/kiemodulemodel/HAL6.drl", getRule());
KieBuilder kb = ks.newKieBuilder(kfs);
kb.setDependencies(ex1Res, ex2Res);
kb.buildAll(); // kieModule is automatically deployed to KieRepository if successfully built.
if (kb.getResults().hasMessages(Level.ERROR)) {
throw new RuntimeException("Build Errors:\n" + kb.getResults().toString());
}
KieContainer kContainer = ks.newKieContainer(rid);
KieSession kSession = kContainer.newKieSession("ksession6");
kSession.setGlobal("out", out);
Object msg1 = createMessage(kContainer, "Dave", "Hello, HAL. Do you read me, HAL?");
kSession.insert(msg1);
kSession.fireAllRules();
Object msg2 = createMessage(kContainer, "Dave", "Open the pod bay doors, HAL.");
kSession.insert(msg2);
kSession.fireAllRules();
Object msg3 = createMessage(kContainer, "Dave", "What's the problem?");
kSession.insert(msg3);
kSession.fireAllRules();
3.2.7. Executable rule models
Rule assets in Drools are built from executable rule models by default with the standard kie-maven-plugin
plugin. Executable rule models are embedded models that provide a Java-based representation of a rule set for execution at build time. The executable model is a more efficient alternative to the standard asset packaging in previous versions of Drools and enables KIE containers and KIE bases to be created more quickly, especially when you have large lists of DRL (Drools Rule Language) files and other Drools assets.
If you do not use the kie-maven-plugin
plugin or if the required drools-model-compiler
dependency is missing from your project, then rule assets are built without executable models. Therefore, to generate the executable model during build time, ensure that the kie-maven-plugin
plugin and drools-model-compiler
dependency are added in your project pom.xml
file.
Executable rule models provide the following specific advantages for your projects:
-
Compile time: Traditionally, a packaged Drools project (KJAR) contains a list of DRL files and other Drools artifacts that define the rule base together with some pre-generated classes implementing the constraints and the consequences. Those DRL files must be parsed and compiled when the KJAR is downloaded from the Maven repository and installed in a KIE container. This process can be slow, especially for large rule sets. With an executable model, you can package within the project KJAR the Java classes that implement the executable model of the project rule base and re-create the KIE container and its KIE bases out of it in a much faster way. In Maven projects, you use the
kie-maven-plugin
plugin to automatically generate the executable model sources from the DRL files during the compilation process. -
Run time: In an executable model, all constraints are defined as Java lambda expressions. The same lambda expressions are also used for constraints evaluation, so you no longer need to use
mvel
expressions for interpreted evaluation nor the just-in-time (JIT) process to transform themvel
-based constraints into bytecode. This creates a quicker and more efficient run time. -
Development time: An executable model enables you to develop and experiment with new features of the Drools engine without needing to encode elements directly in the DRL format or modify the DRL parser to support them.
For query definitions in executable rule models, you can use up to 10 arguments only. For variables within rule consequences in executable rule models, you can use up to 24 bound variables only (including the built-in
|
3.2.7.1. Modifying or disabling executable rule models in a Drools project
Rule assets in Drools are built from executable rule models by default with the standard kie-maven-plugin
plugin. The executable model is a more efficient alternative to the standard asset packaging in previous versions of Drools. However, if needed, you can modify or disable executable rule models to build a Drools project as a DRL-based KJAR instead of the default model-based KJAR.
Build your Drools project in the usual way, but provide an alternate build option, depending on the type of project:
-
For a Maven project, navigate to your Maven project directory in a command terminal and run the following command:
mvn clean install -DgenerateModel=<VALUE>
Replace
<VALUE>
with one of three values:-
YES_WITHDRL
: (Default) Generates the executable model corresponding to the DRL files in the original project and also adds the DRL files to the generated KJAR for documentation purposes (the KIE base is built from the executable model regardless). -
YES
: Generates the executable model corresponding to the DRL files in the original project and excludes the DRL files from the generated KJAR. -
NO
: Does not generate the executable model.
Example build command to disable the default executable model behavior:
mvn clean install -DgenerateModel=NO
-
-
For a Java application configured programmatically, the executable model is disabled by default. Add rule assets to the KIE virtual file system
KieFileSystem
and useKieBuilder
with one of the followingbuildAll()
methods:-
buildAll()
(Default) orbuildAll(DrlProject.class)
: Does not generate the executable model. -
buildAll(ExecutableModelProject.class)
: Generates the executable model corresponding to the DRL files in the original project.
Example code to enable executable model behavior:
import org.kie.api.KieServices; import org.kie.api.builder.KieFileSystem; import org.kie.api.builder.KieBuilder; KieServices ks = KieServices.Factory.get(); KieFileSystem kfs = ks.newKieFileSystem() kfs.write("src/main/resources/KBase1/ruleSet1.drl", stringContainingAValidDRL) .write("src/main/resources/dtable.xls", kieServices.getResources().newInputStreamResource(dtableFileStream)); KieBuilder kieBuilder = ks.newKieBuilder( kfs ); // Enable executable model kieBuilder.buildAll(ExecutableModelProject.class) assertEquals(0, kieBuilder.getResults().getMessages(Message.Level.ERROR).size());
-
3.2.7.2. Enabling executable rule models when upgrading to Drools 7.39
Beginning in Drools 7.39, rule assets are built from executable rule models by default with the standard kie-maven-plugin
plugin. The executable model is a more efficient alternative to the standard asset packaging in previous versions of Drools.
When you install Drools 7.39, this default executable model behavior is configured for all new projects that you create going forward. However, if you are upgrading to Drools 7.39 from a previous version of the product and you have not already enabled executable rule models, you must add the required dependency to your existing Drools projects so that your rule assets are built from executable models in Drools 7.39. If you do not use the kie-maven-plugin
plugin or if the required drools-model-compiler
dependency is missing from your project, then rule assets are built without executable models.
For more information about executable rule models, see Executable rule models.
In the pom.xml
file of your Maven project or on the relevant class path of your Java project, add the following dependency to enable rule assets to be built from the default executable model:
<dependency>
<groupId>org.drools</groupId>
<artifactId>drools-model-compiler</artifactId>
<version>${drools.version}</version>
</dependency>
This dependency compiles the executable model into Drools internal data structures so that it can be executed by the Drools engine.
The <version>
is the Maven artifact version for Drools currently used in your project (for example, 7.67.0.Final).
3.2.8. Using a KIE scanner to monitor and update KIE containers
The KIE scanner in Drools monitors your Maven repository for new SNAPSHOT
versions of your Drools project and then deploys the latest version of the project to a specified KIE container. You can use a KIE scanner in a development environment to maintain your Drools project deployments more efficiently as new versions become available.
For production environments, do not use a KIE scanner with |
-
The
kie-ci.jar
file is available on the class path of your Drools project.
-
In the relevant
.java
class in your project, register and start the KIE scanner as shown in the following example code:Registering and starting a KIE scanner for a KIE containerimport org.kie.api.KieServices; import org.kie.api.builder.ReleaseId; import org.kie.api.runtime.KieContainer; import org.kie.api.builder.KieScanner; ... KieServices kieServices = KieServices.Factory.get(); ReleaseId releaseId = kieServices .newReleaseId("com.sample", "my-app", "1.0-SNAPSHOT"); KieContainer kContainer = kieServices.newKieContainer(releaseId); KieScanner kScanner = kieServices.newKieScanner(kContainer); // Start KIE scanner for polling the Maven repository every 10 seconds (10000 ms) kScanner.start(10000L);
In this example, the KIE scanner is configured to run with a fixed time interval. The minimum KIE scanner polling interval is 1 millisecond (ms) and the maximum polling interval is the maximum value of the data type
long
. A polling interval of 0 or less results in ajava.lang.IllegalArgumentException: pollingInterval must be positive
error. You can also configure the KIE scanner to run on demand by invoking thescanNow()
method.The project group ID, artifact ID, and version (GAV) settings in the example are defined as
com.sample:my-app:1.0-SNAPSHOT
. The project version must contain the-SNAPSHOT
suffix to enable the KIE scanner to retrieve the latest build of the specified artifact version. If you change the snapshot project version number, such as increasing to1.0.1-SNAPSHOT
, then you must also update the version in the GAV definition in your KIE scanner configuration. The KIE scanner does not retrieve updates for projects with static versions, such ascom.sample:my-app:1.0
. -
In the
settings.xml
file of your Maven repository, set theupdatePolicy
configuration toalways
to enable the KIE scanner to function properly:<profile> <id>guvnor-m2-repo</id> <repositories> <repository> <id>guvnor-m2-repo</id> <name>BA Repository</name> <url>http://localhost:8080/business-central/maven2/</url> <layout>default</layout> <releases> <enabled>true</enabled> <updatePolicy>always</updatePolicy> </releases> <snapshots> <enabled>true</enabled> <updatePolicy>always</updatePolicy> </snapshots> </repository> </repositories> </profile>
After the KIE scanner starts polling, if the KIE scanner detects an updated version of the
SNAPSHOT
project in the specified KIE container, the KIE scanner automatically downloads the new project version and triggers an incremental build of the new project. From that moment, all of the newKieBase
andKieSession
objects that were created from the KIE container use the new project version.For information about starting or stopping a KIE scanner using KIE Server APIs, see KIE Server and KIE container commands in Drools.
3.3. Security
3.3.1. Security Manager
The KIE engine is a platform for the modelling and execution of business behavior, using a multitude of declarative abstractions and metaphors, like rules, processes, decision tables and etc.
Many times, the authoring of these metaphors is done by third party groups, be it a different group inside the same company, a group from a partner company, or even anonymous third parties on the internet.
Rules and Processes are designed to execute arbitrary code in order to do their job, but in such cases it might be necessary to constrain what they can do.
For instance, it is unlikely a rule should be allowed to create a classloader (what could open the system to an attack) and certainly it should not be allowed to make a call to System.exit()
.
The Java Platform provides a very comprehensive and well defined security framework that allows users to define policies for what a system can do. The KIE platform leverages that framework and allow application developers to define a specific policy to be applied to any execution of user provided code, be it in rules, processes, work item handlers and etc.
3.3.1.1. How to define a KIE Policy
Rules and processes can run with very restrict permissions, but the engine itself needs to perform many complex operations in order to work. Examples are: it needs to create classloaders, read system properties, access the file system, etc.
Once a security manager is installed, though, it will apply restrictions to all the code executing in the JVM according to the defined policy. For that reason, KIE allows the user to define two different policy files: one for the engine itself and one for the assets deployed into and executed by the engine.
One easy way to setup the environment is to give the engine itself a very permissive policy, while providing a constrained policy for rules and processes.
Policy files follow the standard policy file syntax as described in the Java documentation. For more details, see:
A permissive policy file for the engine can look like the following:
grant {
permission java.security.AllPermission;
}
An example security policy for rules could be:
grant {
permission java.util.PropertyPermission "*", "read";
permission java.lang.RuntimePermission "accessDeclaredMembers";
}
Please note that depending on what the rules and processes are supposed to do, many more permissions might need to be granted, like accessing files in the filesystem, databases, etc.
In order to use these policy files, all that is necessary is to execute the application with these files as parameters to the JVM. Three parameters are required:
Parameter | Meaning |
---|---|
-Djava.security.manager |
Enables the security manager |
-Djava.security.policy=<jvm_policy_file> |
Defines the global policy file to be applied to the whole application, including the engine |
-Dkie.security.policy=<kie_policy_file> |
Defines the policy file to be applied to rules and processes |
For instance:
java -Djava.security.manager -Djava.security.policy=global.policy -Dkie.security.policy=rules.policy
foo.bar.MyApp
When executing the engine inside a container, use your container’s documentation to find out how to configure the Security Manager and how to define the global security policy.
Define the kie security policy as described above and set the |
Please note that unless a Security Manager is configured, the |
A Security Manager has a high performance impact in the JVM. Applications with strict performance requirements are strongly discouraged of using a Security Manager. An alternative is the use of other security procedures like the auditing of rules/processes before testing and deployment to prevent malicious code from being deployed to the environment. |
Drools Run time and Language
Drools is a powerful hybrid reasoning system that intelligently and efficiently processes rule data.
4. Drools engine
The Drools engine is the rules engine in Drools. The Drools engine stores, processes, and evaluates data to execute the business rules or decision models that you define. The basic function of the Drools engine is to match incoming data, or facts, to the conditions of rules and determine whether and how to execute the rules.
The Drools engine operates using the following basic components:
-
Rules: Business rules or DMN decisions that you define. All rules must contain at a minimum the conditions that trigger the rule and the actions that the rule dictates.
-
Facts: Data that enters or changes in the Drools engine that the Drools engine matches to rule conditions to execute applicable rules.
-
Production memory: Location where rules are stored in the Drools engine.
-
Working memory: Location where facts are stored in the Drools engine.
-
Agenda: Location where activated rules are registered and sorted (if applicable) in preparation for execution.
When a business user or an automated system adds or updates rule-related information in Drools, that information is inserted into the working memory of the Drools engine in the form of one or more facts. The Drools engine matches those facts to the conditions of the rules that are stored in the production memory to determine eligible rule executions. (This process of matching facts to rules is often referred to as pattern matching.) When rule conditions are met, the Drools engine activates and registers rules in the agenda, where the Drools engine then sorts prioritized or conflicting rules in preparation for execution.
The following diagram illustrates these basic components of the Drools engine:

For more details and examples of rule and fact behavior in the Drools engine, see Inference and truth maintenance in the Drools engine.
These core concepts can help you to better understand other more advanced components, processes, and sub-processes of the Drools engine, and as a result, to design more effective business assets in Drools.
4.1. KIE sessions
In Drools, a KIE session stores and executes runtime data. The KIE session is created from a KIE base or directly from a KIE container if you have defined the KIE session in the KIE module descriptor file (kmodule.xml
) for your project.
kmodule.xml
file<kmodule>
...
<kbase>
...
<ksession name="KSession2_1" type="stateless" default="true" clockType="realtime">
...
</kbase>
...
</kmodule>
A KIE base is a repository that you define in the KIE module descriptor file (kmodule.xml
) for your project and contains all
in Drools, but does not contain any runtime data.
kmodule.xml
file<kmodule>
...
<kbase name="KBase2" default="false" eventProcessingMode="stream" equalsBehavior="equality" declarativeAgenda="enabled" packages="org.domain.pkg2, org.domain.pkg3" includes="KBase1">
...
</kbase>
...
</kmodule>
A KIE session can be stateless or stateful. In a stateless KIE session, data from a previous invocation of the KIE session (the previous session state) is discarded between session invocations. In a stateful KIE session, that data is retained. The type of KIE session you use depends on your project requirements and how you want data from different asset invocations to be persisted.
4.1.1. Stateless KIE sessions
A stateless KIE session is a session that does not use inference to make iterative changes to facts over time. In a stateless KIE session, data from a previous invocation of the KIE session (the previous session state) is discarded between session invocations, whereas in a stateful KIE session, that data is retained. A stateless KIE session behaves similarly to a function in that the results that it produces are determined by the contents of the KIE base and by the data that is passed into the KIE session for execution at a specific point in time. The KIE session has no memory of any data that was passed into the KIE session previously.
Stateless KIE sessions are commonly used for the following use cases:
-
Validation, such as validating that a person is eligible for a mortgage
-
Calculation, such as computing a mortgage premium
-
Routing and filtering, such as sorting incoming emails into folders or sending incoming emails to a destination
For example, consider the following driver’s license data model and sample DRL rule:
public class Applicant {
private String name;
private int age;
private boolean valid;
// Getter and setter methods
}
package com.company.license
rule "Is of valid age"
when
$a : Applicant(age < 18)
then
$a.setValid(false);
end
The Is of valid age
rule disqualifies any applicant younger than 18 years old. When the Applicant
object is inserted into the Drools engine, the Drools engine evaluates the constraints for each rule and searches for a match. The "objectType"
constraint is always implied, after which any number of explicit field constraints are evaluated. The variable $a
is a binding variable that references the matched object in the rule consequence.
The dollar sign ( |
In this example, the sample rule and all other files in the ~/resources
folder of the Drools project are built with the following code:
KieServices kieServices = KieServices.Factory.get();
KieContainer kContainer = kieServices.getKieClasspathContainer();
This code compiles all the rule files found on the class path and adds the result of this compilation, a KieModule
object, in the KieContainer
.
Finally, the StatelessKieSession
object is instantiated from the KieContainer
and is executed against specified data:
StatelessKieSession kSession = kContainer.newStatelessKieSession();
Applicant applicant = new Applicant("Mr John Smith", 16);
assertTrue(applicant.isValid());
ksession.execute(applicant);
assertFalse(applicant.isValid());
In a stateless KIE session configuration, the execute()
call acts as a combination method that instantiates the KieSession
object, adds all the user data and executes user commands, calls fireAllRules()
, and then calls dispose()
. Therefore, with a stateless KIE session, you do not need to call fireAllRules()
or call dispose()
after session invocation as you do with a stateful KIE session.
In this case, the specified applicant is under the age of 18, so the application is declined.
For a more complex use case, see the following example. This example uses a stateless KIE session and executes rules against an iterable list of objects, such as a collection.
public class Applicant {
private String name;
private int age;
// Getter and setter methods
}
public class Application {
private Date dateApplied;
private boolean valid;
// Getter and setter methods
}
package com.company.license
rule "Is of valid age"
when
Applicant(age < 18)
$a : Application()
then
$a.setValid(false);
end
rule "Application was made this year"
when
$a : Application(dateApplied > "01-jan-2009")
then
$a.setValid(false);
end
StatelessKieSession ksession = kbase.newStatelessKnowledgeSession();
Applicant applicant = new Applicant("Mr John Smith", 16);
Application application = new Application();
assertTrue(application.isValid());
ksession.execute(Arrays.asList(new Object[] { application, applicant })); (1)
assertFalse(application.isValid());
ksession.execute
(CommandFactory.newInsertIterable(new Object[] { application, applicant })); (2)
List<Command> cmds = new ArrayList<Command>(); (3)
cmds.add(CommandFactory.newInsert(new Person("Mr John Smith"), "mrSmith"));
cmds.add(CommandFactory.newInsert(new Person("Mr John Doe"), "mrDoe"));
BatchExecutionResults results = ksession.execute(CommandFactory.newBatchExecution(cmds));
assertEquals(new Person("Mr John Smith"), results.getValue("mrSmith"));
1 | Method for executing rules against an iterable collection of objects produced by the Arrays.asList() method. Every collection element is inserted before any matched rules are executed. The execute(Object object) and execute(Iterable objects) methods are wrappers around the execute(Command command) method that comes from the BatchExecutor interface. |
2 | Execution of the iterable collection of objects using the CommandFactory interface. |
3 | BatchExecutor and CommandFactory configurations for working with many different commands or result output identifiers. The CommandFactory interface supports other commands that you can use in the BatchExecutor , such as StartProcess , Query , and SetGlobal . |
4.1.1.1. Global variables in stateless KIE sessions
The StatelessKieSession
object supports global variables (globals) that you can configure to be resolved as session-scoped globals, delegate globals, or execution-scoped globals.
-
Session-scoped globals: For session-scoped globals, you can use the method
getGlobals()
to return aGlobals
instance that provides access to the KIE session globals. These globals are used for all execution calls. Use caution with mutable globals because execution calls can be executing simultaneously in different threads.Session-scoped globalimport org.kie.api.runtime.StatelessKieSession; StatelessKieSession ksession = kbase.newStatelessKieSession(); // Set a global `myGlobal` that can be used in the rules. ksession.setGlobal("myGlobal", "I am a global"); // Execute while resolving the `myGlobal` identifier. ksession.execute(collection);
-
Delegate globals: For delegate globals, you can assign a value to a global (with
setGlobal(String, Object)
) so that the value is stored in an internal collection that maps identifiers to values. Identifiers in this internal collection have priority over any supplied delegate. If an identifier cannot be found in this internal collection, the delegate global (if any) is used. -
Execution-scoped globals: For execution-scoped globals, you can use the
Command
object to set a global that is passed to theCommandExecutor
interface for execution-specific global resolution.
The CommandExecutor
interface also enables you to export data using out identifiers for globals, inserted facts, and query results:
import org.kie.api.runtime.ExecutionResults;
// Set up a list of commands.
List cmds = new ArrayList();
cmds.add(CommandFactory.newSetGlobal("list1", new ArrayList(), true));
cmds.add(CommandFactory.newInsert(new Person("jon", 102), "person"));
cmds.add(CommandFactory.newQuery("Get People" "getPeople"));
// Execute the list.
ExecutionResults results = ksession.execute(CommandFactory.newBatchExecution(cmds));
// Retrieve the `ArrayList`.
results.getValue("list1");
// Retrieve the inserted `Person` fact.
results.getValue("person");
// Retrieve the query as a `QueryResults` instance.
results.getValue("Get People");
4.1.2. Stateful KIE sessions
A stateful KIE session is a session that uses inference to make iterative changes to facts over time. In a stateful KIE session, data from a previous invocation of the KIE session (the previous session state) is retained between session invocations, whereas in a stateless KIE session, that data is discarded.
Ensure that you call the dispose() method after running a stateful KIE session so that no memory leaks occur between session invocations.
|
Stateful KIE sessions are commonly used for the following use cases:
-
Monitoring, such as monitoring a stock market and automating the buying process
-
Diagnostics, such as running fault-finding processes or medical diagnostic processes
-
Logistics, such as parcel tracking and delivery provisioning
-
Ensuring compliance, such as verifying the legality of market trades
For example, consider the following fire alarm data model and sample DRL rules:
public class Room {
private String name;
// Getter and setter methods
}
public class Sprinkler {
private Room room;
private boolean on;
// Getter and setter methods
}
public class Fire {
private Room room;
// Getter and setter methods
}
public class Alarm { }
rule "When there is a fire turn on the sprinkler"
when
Fire($room : room)
$sprinkler : Sprinkler(room == $room, on == false)
then
modify($sprinkler) { setOn(true) };
System.out.println("Turn on the sprinkler for room "+$room.getName());
end
rule "Raise the alarm when we have one or more fires"
when
exists Fire()
then
insert( new Alarm() );
System.out.println( "Raise the alarm" );
end
rule "Cancel the alarm when all the fires have gone"
when
not Fire()
$alarm : Alarm()
then
delete( $alarm );
System.out.println( "Cancel the alarm" );
end
rule "Status output when things are ok"
when
not Alarm()
not Sprinkler( on == true )
then
System.out.println( "Everything is ok" );
end
For the When there is a fire turn on the sprinkler
rule, when a fire occurs, the instances of the Fire
class are created for that room and inserted into the KIE session. The rule adds a constraint for the specific room
matched in the Fire
instance so that only the sprinkler for that room is checked. When this rule is executed, the sprinkler activates. The other sample rules determine when the alarm is activated or deactivated accordingly.
Whereas a stateless KIE session relies on standard Java syntax to modify a field, a stateful KIE session relies on the modify
statement in rules to notify the Drools engine of changes. The Drools engine then reasons over the changes and assesses impact on subsequent rule executions. This process is part of the Drools engine ability to use inference and truth maintenance and is essential in stateful KIE sessions.
In this example, the sample rules and all other files in the ~/resources
folder of the Drools project are built with the following code:
KieServices kieServices = KieServices.Factory.get();
KieContainer kContainer = kieServices.getKieClasspathContainer();
This code compiles all the rule files found on the class path and adds the result of this compilation, a KieModule
object, in the KieContainer
.
Finally, the KieSession
object is instantiated from the KieContainer
and is executed against specified data:
KieSession ksession = kContainer.newKieSession();
String[] names = new String[]{"kitchen", "bedroom", "office", "livingroom"};
Map<String,Room> name2room = new HashMap<String,Room>();
for( String name: names ){
Room room = new Room( name );
name2room.put( name, room );
ksession.insert( room );
Sprinkler sprinkler = new Sprinkler( room );
ksession.insert( sprinkler );
}
ksession.fireAllRules();
> Everything is ok
With the data added, the Drools engine completes all pattern matching but no rules have been executed, so the configured verification message appears. As new data triggers rule conditions, the Drools engine executes rules to activate the alarm and later to cancel the alarm that has been activated:
Fire kitchenFire = new Fire( name2room.get( "kitchen" ) );
Fire officeFire = new Fire( name2room.get( "office" ) );
FactHandle kitchenFireHandle = ksession.insert( kitchenFire );
FactHandle officeFireHandle = ksession.insert( officeFire );
ksession.fireAllRules();
> Raise the alarm
> Turn on the sprinkler for room kitchen
> Turn on the sprinkler for room office
ksession.delete( kitchenFireHandle );
ksession.delete( officeFireHandle );
ksession.fireAllRules();
> Cancel the alarm
> Turn off the sprinkler for room office
> Turn off the sprinkler for room kitchen
> Everything is ok
In this case, a reference is kept for the returned FactHandle
object. A fact handle is an internal engine reference to the inserted instance and enables instances to be retracted or modified later.
As this example illustrates, the data and results from previous stateful KIE sessions (the activated alarm) affect the invocation of subsequent sessions (alarm cancellation).
4.1.3. KIE session pools
In use cases with large amounts of KIE runtime data and high system activity, KIE sessions might be created and disposed very frequently. A high turnover of KIE sessions is not always time consuming, but when the turnover is repeated millions of times, the process can become a bottleneck and require substantial clean-up effort.
For these high-volume cases, you can use KIE session pools instead of many individual KIE sessions. To use a KIE session pool, you obtain a KIE session pool from a KIE container, define the initial number of KIE sessions in the pool, and create the KIE sessions from that pool as usual:
// Obtain a KIE session pool from the KIE container
KieContainerSessionsPool pool = kContainer.newKieSessionsPool(10);
// Create KIE sessions from the KIE session pool
KieSession kSession = pool.newKieSession();
In this example, the KIE session pool starts with 10 KIE sessions in it, but you can specify the number of KIE sessions that you need. This integer value is the number of KIE sessions that are only initially created in the pool. If required by the running application, the number of KIE sessions in the pool can dynamically grow beyond that value.
After you define a KIE session pool, the next time you use the KIE session as usual and call dispose()
on it, the KIE session is reset and pushed back into the pool instead of being destroyed.
KIE session pools typically apply to stateful KIE sessions, but KIE session pools can also affect stateless KIE sessions that you reuse with multiple execute()
calls. When you create a stateless KIE session directly from a KIE container, the KIE session continues to internally create a new KIE session for each execute()
invocation. Conversely, when you create a stateless KIE session from a KIE session pool, the KIE session internally uses only the specific KIE sessions provided by the pool.
When you finish using a KIE session pool, you can call the shutdown()
method on it to avoid memory leaks. Alternatively, you can call dispose()
on the KIE container to shut down all the pools created from the KIE container.
4.2. Inference and truth maintenance in the Drools engine
The basic function of the Drools engine is to match data to business rules and determine whether and how to execute rules. To ensure that relevant data is applied to the appropriate rules, the Drools engine makes inferences based on existing knowledge and performs the actions based on the inferred information.
For example, the following DRL rule determines the age requirements for adults, such as in a bus pass policy:
rule "Infer Adult"
when
$p : Person(age >= 18)
then
insert(new IsAdult($p))
end
Based on this rule, the Drools engine infers whether a person is an adult or a child and performs the specified action (the then
consequence). Every person who is 18 years old or older has an instance of IsAdult
inserted for them in the working memory. This inferred relation of age and bus pass can then be invoked in any rule, such as in the following rule segment:
$p : Person()
IsAdult(person == $p)
In many cases, new data in a rule system is the result of other rule executions, and this new data can affect the execution of other rules. If the Drools engine asserts data as a result of executing a rule, the Drools engine uses truth maintenance to justify the assertion and enforce truthfulness when applying inferred information to other rules. Truth maintenance also helps to identify inconsistencies and to handle contradictions. For example, if two rules are executed and result in a contradictory action, the Drools engine chooses the action based on assumptions from previously calculated conclusions.
The Drools engine inserts facts using either stated or logical insertions:
-
Stated insertions: Defined with
insert()
. After stated insertions, facts are generally retracted explicitly. (The term insertion, when used generically, refers to stated insertion.) -
Logical insertions: Defined with
insertLogical()
. After logical insertions, the facts that were inserted are automatically retracted when the conditions in the rules that inserted the facts are no longer true. The facts are retracted when no condition supports the logical insertion. A fact that is logically inserted is considered to be justified by the Drools engine.
For example, the following sample DRL rules use stated fact insertion to determine the age requirements for issuing a child bus pass or an adult bus pass:
rule "Issue Child Bus Pass"
when
$p : Person(age < 18)
then
insert(new ChildBusPass($p));
end
rule "Issue Adult Bus Pass"
when
$p : Person(age >= 18)
then
insert(new AdultBusPass($p));
end
These rules are not easily maintained in the Drools engine as bus riders increase in age and move from child to adult bus pass. As an alternative, these rules can be separated into rules for bus rider age and rules for bus pass type using logical fact insertion. The logical insertion of the fact makes the fact dependent on the truth of the when
clause.
The following DRL rules use logical insertion to determine the age requirements for children and adults:
rule "Infer Child"
when
$p : Person(age < 18)
then
insertLogical(new IsChild($p))
end
rule "Infer Adult"
when
$p : Person(age >= 18)
then
insertLogical(new IsAdult($p))
end
For logical insertions, your fact objects must override the equals and hashCode methods from the java.lang.Object object according to the Java standard. Two objects are equal if their equals methods return true for each other and if their hashCode methods return the same values. For more information, see the Java API documentation for your Java version.
|
When the condition in the rule is false, the fact is automatically retracted. This behavior is helpful in this example because the two rules are mutually exclusive. In this example, if the person is younger than 18 years old, the rule logically inserts an IsChild
fact. After the person is 18 years old or older, the IsChild
fact is automatically retracted and the IsAdult
fact is inserted.
The following DRL rules then determine whether to issue a child bus pass or an adult bus pass and logically insert the ChildBusPass
and AdultBusPass
facts. This rule configuration is possible because the truth maintenance system in the Drools engine supports chaining of logical insertions for a cascading set of retracts.
rule "Issue Child Bus Pass"
when
$p : Person()
IsChild(person == $p)
then
insertLogical(new ChildBusPass($p));
end
rule "Issue Adult Bus Pass"
when
$p : Person()
IsAdult(person =$p)
then
insertLogical(new AdultBusPass($p));
end
When a person turns 18 years old, the IsChild
fact and the person’s ChildBusPass
fact is retracted. To these set of conditions, you can relate another rule that states that a person must return the child pass after turning 18 years old. When the Drools engine automatically retracts the ChildBusPass
object, the following rule is executed to send a request to the person:
rule "Return ChildBusPass Request"
when
$p : Person()
not(ChildBusPass(person == $p))
then
requestChildBusPass($p);
end
The following flowcharts illustrate the life cycle of stated and logical insertions:


When the Drools engine logically inserts an object during a rule execution, the Drools engine justifies the object by executing the rule. For each logical insertion, only one equal object can exist, and each subsequent equal logical insertion increases the justification counter for that logical insertion. A justification is removed when the conditions of the rule become untrue. When no more justifications exist, the logical object is automatically retracted.
4.2.1. Government ID example
So now we know what inference is, and have a basic example, how does this facilitate good rule design and maintenance?
Consider a government ID department that is responsible for issuing ID cards when children become adults. They might have a decision table that includes logic like this, which says when an adult living in London is 18 or over, issue the card:
RuleTable ID Card |
|||
CONDITION |
CONDITION |
ACTION |
|
p : Person |
|||
location |
age >= $1 |
issueIdCard($1) |
|
Select Person |
Select Adults |
Issue ID Card |
|
Issue ID Card to Adults |
London |
18 |
p |
However the ID department does not set the policy on who an adult is. That’s done at a central government level. If the central government were to change that age to 21, this would initiate a change management process. Someone would have to liaise with the ID department and make sure their systems are updated, in time for the law going live.
This change management process and communication between departments is not ideal for an agile environment, and change becomes costly and error prone. Also the card department is managing more information than it needs to be aware of with its "monolithic" approach to rules management which is "leaking" information better placed elsewhere. By this I mean that it doesn’t care what explicit "age >= 18" information determines whether someone is an adult, only that they are an adult.
In contrast to this, let’s pursue an approach where we split (de-couple) the authoring responsibilities, so that both the central government and the ID department maintain their own rules.
It’s the central government’s job to determine who is an adult. If they change the law they just update their central repository with the new rules, which others use:
RuleTable Age Policy |
||
CONDITION |
ACTION |
|
p : Person |
||
age >= $1 |
insert($1) |
|
Adult Age Policy |
Add Adult Relation |
|
Infer Adult |
18 |
new IsAdult( p ) |
The IsAdult fact, as discussed previously, is inferred from the policy rules. It encapsulates the seemingly arbitrary piece of logic "age >= 18" and provides semantic abstractions for its meaning. Now if anyone uses the above rules, they no longer need to be aware of explicit information that determines whether someone is an adult or not. They can just use the inferred fact:
RuleTable ID Card |
|||
CONDITION |
CONDITION |
ACTION |
|
p : Person |
isAdult |
||
location |
person == $1 |
issueIdCard($1) |
|
Select Person |
Select Adults |
Issue ID Card |
|
Issue ID Card to Adults |
London |
p |
p |
While the example is very minimal and trivial it illustrates some important points. We started with a monolithic and leaky approach to our knowledge engineering. We created a single decision table that had all possible information in it and that leaks information from central government that the ID department did not care about and did not want to manage.
We first de-coupled the knowledge process so each department was responsible for only what it needed to know. We then encapsulated this leaky knowledge using an inferred fact IsAdult. The use of the term IsAdult also gave a semantic abstraction to the previously arbitrary logic "age >= 18".
So a general rule of thumb when doing your knowledge engineering is:
-
Bad
-
Monolithic
-
Leaky
-
-
Good
-
De-couple knowledge responsibilities
-
Encapsulate knowledge
-
Provide semantic abstractions for those encapsulations
-
4.2.2. Fact equality modes in the Drools engine
The Drools engine supports the following fact equality modes that determine how the Drools engine stores and compares inserted facts:
-
identity
: (Default) The Drools engine uses anIdentityHashMap
to store all inserted facts. For every new fact insertion, the Drools engine returns a newFactHandle
object. If a fact is inserted again, the Drools engine returns the originalFactHandle
object, ignoring repeated insertions for the same fact. In this mode, two facts are the same for the Drools engine only if they are the very same object with the same identity. -
equality
: The Drools engine uses aHashMap
to store all inserted facts. The Drools engine returns a newFactHandle
object only if the inserted fact is not equal to an existing fact, according to theequals()
method of the inserted fact. In this mode, two facts are the same for the Drools engine if they are composed the same way, regardless of identity. Use this mode when you want objects to be assessed based on feature equality instead of explicit identity.
As an illustration of fact equality modes, consider the following example facts:
Person p1 = new Person("John", 45);
Person p2 = new Person("John", 45);
In identity
mode, facts p1
and p2
are different instances of a Person
class and are treated as separate objects because they have separate identities. In equality
mode, facts p1
and p2
are treated as the same object because they are composed the same way. This difference in behavior affects how you can interact with fact handles.
For example, assume that you insert facts p1
and p2
into the Drools engine and later you want to retrieve the fact handle for p1
. In identity
mode, you must specify p1
to return the fact handle for that exact object, whereas in equality
mode, you can specify p1
, p2
, or new Person("John", 45)
to return the fact handle.
identity
modeksession.insert(p1);
ksession.getFactHandle(p1);
equality
modeksession.insert(p1);
ksession.getFactHandle(p1);
// Alternate option:
ksession.getFactHandle(new Person("John", 45));
To set the fact equality mode, use one of the following options:
-
Set the system property
drools.equalityBehavior
toidentity
(default) orequality
. -
Set the equality mode while creating the KIE base programmatically:
KieServices ks = KieServices.get(); KieBaseConfiguration kieBaseConf = ks.newKieBaseConfiguration(); kieBaseConf.setOption(EqualityBehaviorOption.EQUALITY); KieBase kieBase = kieContainer.newKieBase(kieBaseConf);
-
Set the equality mode in the KIE module descriptor file (
kmodule.xml
) for a specific Drools project:<kmodule> ... <kbase name="KBase2" default="false" equalsBehavior="equality" packages="org.domain.pkg2, org.domain.pkg3" includes="KBase1"> ... </kbase> ... </kmodule>
4.3. Execution control in the Drools engine
When new rule data enters the working memory of the Drools engine, rules may become fully matched and eligible for execution. A single working memory action can result in multiple eligible rule executions. When a rule is fully matched, the Drools engine creates an activation instance, referencing the rule and the matched facts, and adds the activation onto the Drools engine agenda. The agenda controls the execution order of these rule activations using a conflict resolution strategy.
After the first call of fireAllRules()
in the Java application, the Drools engine cycles repeatedly through two phases:
-
Agenda evaluation. In this phase, the Drools engine selects all rules that can be executed. If no executable rules exist, the execution cycle ends. If an executable rule is found, the Drools engine registers the activation in the agenda and then moves on to the working memory actions phase to perform rule consequence actions.
-
Working memory actions. In this phase, the Drools engine performs the rule consequence actions (the
then
portion of each rule) for all activated rules previously registered in the agenda. After all the consequence actions are complete or the main Java application process callsfireAllRules()
again, the Drools engine returns to the agenda evaluation phase to reassess rules.

When multiple rules exist on the agenda, the execution of one rule may cause another rule to be removed from the agenda. To avoid this, you can define how and when rules are executed in the Drools engine. Some common methods for defining rule execution order are by using rule salience, agenda groups, or activation groups.
4.3.1. Salience for rules
Each rule has an integer salience
attribute that determines the order of execution. Rules with a higher salience value are given higher priority when ordered in the activation queue. The default salience value for rules is zero, but the salience can be negative or positive.
For example, the following sample DRL rules are listed in the Drools engine stack in the order shown:
rule "RuleA"
salience 95
when
$fact : MyFact( field1 == true )
then
System.out.println("Rule2 : " + $fact);
update($fact);
end
rule "RuleB"
salience 100
when
$fact : MyFact( field1 == false )
then
System.out.println("Rule1 : " + $fact);
$fact.setField1(true);
update($fact);
end
The RuleB
rule is listed second, but it has a higher salience value than the RuleA
rule and is therefore executed first.
4.3.2. Agenda groups for rules
An agenda group is a set of rules bound together by the same agenda-group
rule attribute. Agenda groups partition rules on the Drools engine agenda. At any one time, only one group has a focus that gives that group of rules priority for execution before rules in other agenda groups. You determine the focus with a setFocus()
call for the agenda group. You can also define rules with an auto-focus
attribute so that the next time the rule is activated, the focus is automatically given to the entire agenda group to which the rule is assigned.
Each time the setFocus()
call is made in a Java application, the Drools engine adds the specified agenda group to the top of the rule stack. The default agenda group "MAIN"
contains all rules that do not belong to a specified agenda group and is executed first in the stack unless another group has the focus.
For example, the following sample DRL rules belong to specified agenda groups and are listed in the Drools engine stack in the order shown:
rule "Increase balance for credits"
agenda-group "calculation"
when
ap : AccountPeriod()
acc : Account( $accountNo : accountNo )
CashFlow( type == CREDIT,
accountNo == $accountNo,
date >= ap.start && <= ap.end,
$amount : amount )
then
acc.balance += $amount;
end
rule "Print balance for AccountPeriod"
agenda-group "report"
when
ap : AccountPeriod()
acc : Account()
then
System.out.println( acc.accountNo +
" : " + acc.balance );
end
For this example, the rules in the "report"
agenda group must always be executed first and the rules in the "calculation"
agenda group must always be executed second. Any remaining rules in other agenda groups can then be executed. Therefore, the "report"
and "calculation"
groups must receive the focus to be executed in that order, before other rules can be executed:
Agenda agenda = ksession.getAgenda();
agenda.getAgendaGroup( "report" ).setFocus();
agenda.getAgendaGroup( "calculation" ).setFocus();
ksession.fireAllRules();
You can also use the clear()
method to cancel all the activations generated by the rules belonging to a given agenda group before each has had a chance to be executed:
ksession.getAgenda().getAgendaGroup( "Group A" ).clear();
4.3.3. Activation groups for rules
An activation group is a set of rules bound together by the same activation-group
rule attribute. In this group, only one rule can be executed. After conditions are met for a rule in that group to be executed, all other pending rule executions from that activation group are removed from the agenda.
For example, the following sample DRL rules belong to the specified activation group and are listed in the Drools engine stack in the order shown:
rule "Print balance for AccountPeriod1"
activation-group "report"
when
ap : AccountPeriod1()
acc : Account()
then
System.out.println( acc.accountNo +
" : " + acc.balance );
end
rule "Print balance for AccountPeriod2"
activation-group "report"
when
ap : AccountPeriod2()
acc : Account()
then
System.out.println( acc.accountNo +
" : " + acc.balance );
end
For this example, if the first rule in the "report"
activation group is executed, the second rule in the group and all other executable rules on the agenda are removed from the agenda.
4.3.4. Rule execution modes and thread safety in the Drools engine
The Drools engine supports the following rule execution modes that determine how and when the Drools engine executes rules:
-
Passive mode: (Default) The Drools engine evaluates rules when a user or an application explicitly calls
fireAllRules()
. Passive mode in the Drools engine is best for applications that require direct control over rule evaluation and execution, or for complex event processing (CEP) applications that use the pseudo clock implementation in the Drools engine.Example CEP application code with the Drools engine in passive modeKieSessionConfiguration config = KieServices.Factory.get().newKieSessionConfiguration(); config.setOption( ClockTypeOption.get("pseudo") ); KieSession session = kbase.newKieSession( conf, null ); SessionPseudoClock clock = session.getSessionClock(); session.insert( tick1 ); session.fireAllRules(); clock.advanceTime(1, TimeUnit.SECONDS); session.insert( tick2 ); session.fireAllRules(); clock.advanceTime(1, TimeUnit.SECONDS); session.insert( tick3 ); session.fireAllRules(); session.dispose();
-
Active mode: If a user or application calls
fireUntilHalt()
, the Drools engine starts in active mode and evaluates rules continually until the user or application explicitly callshalt()
. Active mode in the Drools engine is best for applications that delegate control of rule evaluation and execution to the Drools engine, or for complex event processing (CEP) applications that use the real-time clock implementation in the Drools engine. Active mode is also optimal for CEP applications that use active queries.Example CEP application code with the Drools engine in active modeKieSessionConfiguration config = KieServices.Factory.get().newKieSessionConfiguration(); config.setOption( ClockTypeOption.get("realtime") ); KieSession session = kbase.newKieSession( conf, null ); new Thread( new Runnable() { @Override public void run() { session.fireUntilHalt(); } } ).start(); session.insert( tick1 ); ... Thread.sleep( 1000L ); ... session.insert( tick2 ); ... Thread.sleep( 1000L ); ... session.insert( tick3 ); session.halt(); session.dispose();
This example calls
fireUntilHalt()
from a dedicated execution thread to prevent the current thread from being blocked indefinitely while the Drools engine continues evaluating rules. The dedicated thread also enables you to callhalt()
at a later stage in the application code.
Although you should avoid using both fireAllRules()
and fireUntilHalt()
calls, especially from different threads, the Drools engine can handle such situations safely using thread-safety logic and an internal state machine. If a fireAllRules()
call is in progress and you call fireUntilHalt()
, the Drools engine continues to run in passive mode until the fireAllRules()
operation is complete and then starts in active mode in response to the fireUntilHalt()
call. However, if the Drools engine is running in active mode following a fireUntilHalt()
call and you call fireAllRules()
, the fireAllRules()
call is ignored and the Drools engine continues to run in active mode until you call halt()
.
For more details about thread-safety and the internal state machine, see Improved multi-threading behaviour.
For added thread safety in active mode, the Drools engine supports a submit()
method that you can use to group and perform operations on a KIE session in a thread-safe, atomic action:
submit()
method to perform atomic operations in active modeKieSession session = ...;
new Thread( new Runnable() {
@Override
public void run() {
session.fireUntilHalt();
}
} ).start();
final FactHandle fh = session.insert( fact_a );
... Thread.sleep( 1000L ); ...
session.submit( new KieSession.AtomicAction() {
@Override
public void execute( KieSession kieSession ) {
fact_a.setField("value");
kieSession.update( fh, fact_a );
kieSession.insert( fact_1 );
kieSession.insert( fact_2 );
kieSession.insert( fact_3 );
}
} );
... Thread.sleep( 1000L ); ...
session.insert( fact_z );
session.halt();
session.dispose();
Thread safety and atomic operations are also helpful from a client-side perspective. For example, you might need to insert more than one fact at a given time, but require the Drools engine to consider the insertions as an atomic operation and to wait until all the insertions are complete before evaluating the rules again.
4.3.5. Fact propagation modes in the Drools engine
The Drools engine supports the following fact propagation modes that determine how the Drools engine progresses inserted facts through the engine network in preparation for rule execution:
-
Lazy: (Default) Facts are propagated in batch collections at rule execution, not in real time as the facts are individually inserted by a user or application. As a result, the order in which the facts are ultimately propagated through the Drools engine may be different from the order in which the facts were individually inserted.
-
Immediate: Facts are propagated immediately in the order that they are inserted by a user or application.
-
Eager: Facts are propagated lazily (in batch collections), but before rule execution. The Drools engine uses this propagation behavior for rules that have the
no-loop
orlock-on-active
attribute.
By default, the Phreak rule algorithm in the Drools engine uses lazy fact propagation for improved rule evaluation overall. However, in few cases, this lazy propagation behavior can alter the expected result of certain rule executions that may require immediate or eager propagation.
For example, the following rule uses a specified query with a ?
prefix to invoke the query in pull-only or passive fashion:
query Q (Integer i)
String( this == i.toString() )
end
rule "Rule"
when
$i : Integer()
?Q( $i; )
then
System.out.println( $i );
end
For this example, the rule should be executed only when a String
that satisfies the query is inserted before the Integer
, such as in the following example commands:
KieSession ksession = ...
ksession.insert("1");
ksession.insert(1);
ksession.fireAllRules();
However, due to the default lazy propagation behavior in Phreak, the Drools engine does not detect the insertion sequence of the two facts in this case, so this rule is executed regardless of String
and Integer
insertion order. For this example, immediate propagation is required for the expected rule evaluation.
To alter the Drools engine propagation mode to achieve the expected rule evaluation in this case, you can add the @Propagation(<type>)
tag to your rule and set <type>
to LAZY
, IMMEDIATE
, or EAGER
.
In the same example rule, the immediate propagation annotation enables the rule to be evaluated only when a String
that satisfies the query is inserted before the Integer
, as expected:
query Q (Integer i)
String( this == i.toString() )
end
rule "Rule" @Propagation(IMMEDIATE)
when
$i : Integer()
?Q( $i; )
then
System.out.println( $i );
end
4.3.6. Agenda evaluation filters

The Drools engine supports an AgendaFilter
object in the filter interface that you can use to allow or deny the evaluation of specified rules during agenda evaluation. You can specify an agenda filter as part of a fireAllRules()
call.
The following example code permits only rules ending with the string "Test"
to be evaluated and executed. All other rules are filtered out of the Drools engine agenda.
ksession.fireAllRules( new RuleNameEndsWithAgendaFilter( "Test" ) );
4.4. Phreak rule algorithm in the Drools engine
The Drools engine in Drools uses the Phreak algorithm for rule evaluation. Phreak evolved from the Rete algorithm, including the enhanced Rete algorithm ReteOO that was introduced in previous versions of Drools for object-oriented systems. Overall, Phreak is more scalable than Rete and ReteOO, and is faster in large systems.
While Rete is considered eager (immediate rule evaluation) and data oriented, Phreak is considered lazy (delayed rule evaluation) and goal oriented. The Rete algorithm performs many actions during the insert, update, and delete actions in order to find partial matches for all rules. This eagerness of the Rete algorithm during rule matching requires a lot of time before eventually executing rules, especially in large systems. With Phreak, this partial matching of rules is delayed deliberately to handle large amounts of data more efficiently.
The Phreak algorithm adds the following set of enhancements to previous Rete algorithms:
-
Three layers of contextual memory: Node, segment, and rule memory types
-
Rule-based, segment-based, and node-based linking
-
Lazy (delayed) rule evaluation
-
Stack-based evaluations with pause and resume
-
Isolated rule evaluation
-
Set-oriented propagations
4.4.1. Rule evaluation in Phreak
When the Drools engine starts, all rules are considered to be unlinked from pattern-matching data that can trigger the rules. At this stage, the Phreak algorithm in the Drools engine does not evaluate the rules. The insert
, update
, and delete
actions are queued, and Phreak uses a heuristic, based on the rule most likely to result in execution, to calculate and select the next rule for evaluation. When all the required input values are populated for a rule, the rule is considered to be linked to the relevant pattern-matching data. Phreak then creates a goal that represents this rule and places the goal into a priority queue that is ordered by rule salience. Only the rule for which the goal was created is evaluated, and other potential rule evaluations are delayed. While individual rules are evaluated, node sharing is still achieved through the process of segmentation.
Unlike the tuple-oriented Rete, the Phreak propagation is collection oriented. For the rule that is being evaluated, the Drools engine accesses the first node and processes all queued insert, update, and delete actions. The results are added to a set, and the set is propagated to the child node. In the child node, all queued insert, update, and delete actions are processed, adding the results to the same set. The set is then propagated to the next child node and the same process repeats until it reaches the terminal node. This cycle creates a batch process effect that can provide performance advantages for certain rule constructs.
The linking and unlinking of rules happens through a layered bit-mask system, based on network segmentation. When the rule network is built, segments are created for rule network nodes that are shared by the same set of rules. A rule is composed of a path of segments. In case a rule does not share any node with any other rule, it becomes a single segment.
A bit-mask offset is assigned to each node in the segment. Another bit mask is assigned to each segment in the path of the rule according to these requirements:
-
If at least one input for a node exists, the node bit is set to the
on
state. -
If each node in a segment has the bit set to the
on
state, the segment bit is also set to theon
state. -
If any node bit is set to the
off
state, the segment is also set to theoff
state. -
If each segment in the path of the rule is set to the
on
state, the rule is considered linked, and a goal is created to schedule the rule for evaluation.
The same bit-mask technique is used to track modified nodes, segments, and rules. This tracking ability enables an already linked rule to be unscheduled from evaluation if it has been modified since the evaluation goal for it was created. As a result, no rules can ever evaluate partial matches.
This process of rule evaluation is possible in Phreak because, as opposed to a single unit of memory in Rete, Phreak has three layers of contextual memory with node, segment, and rule memory types. This layering enables much more contextual understanding during the evaluation of a rule.

The following examples illustrate how rules are organized and evaluated in this three-layered memory system in Phreak.
Example 1: A single rule (R1) with three patterns: A, B and C. The rule forms a single segment, with bits 1, 2, and 4 for the nodes. The single segment has a bit offset of 1.

Example 2: Rule R2 is added and shares pattern A.

Pattern A is placed in its own segment, resulting in two segments for each rule. Those two segments form a path for their respective rules. The first segment is shared by both paths. When pattern A is linked, the segment becomes linked. The segment then iterates over each path that the segment is shared by, setting the bit 1 to on
. If patterns B and C are later turned on, the second segment for path R1 is linked, and this causes bit 2 to be turned on for R1. With bit 1 and bit 2 turned on for R1, the rule is now linked and a goal is created to schedule the rule for later evaluation and execution.
When a rule is evaluated, the segments enable the results of the matching to be shared. Each segment has a staging memory to queue all inserts, updates, and deletes for that segment. When R1 is evaluated, the rule processes pattern A, and this results in a set of tuples. The algorithm detects a segmentation split, creates peered tuples for each insert, update, and delete in the set, and adds them to the R2 staging memory. Those tuples are then merged with any existing staged tuples and are executed when R2 is eventually evaluated.
Example 3: Rules R3 and R4 are added and share patterns A and B.

Rules R3 and R4 have three segments and R1 has two segments. Patterns A and B are shared by R1, R3, and R4, while pattern D is shared by R3 and R4.
Example 4: A single rule (R1) with a subnetwork and no pattern sharing.

Subnetworks are formed when a Not
, Exists
, or Accumulate
node contains more than one element. In this example, the element B not( C )
forms the subnetwork. The element not( C )
is a single element that does not require a subnetwork and is therefore merged inside of the Not
node. The subnetwork uses a dedicated segment. Rule R1 still has a path of two segments and the subnetwork forms another inner path. When the subnetwork is linked, it is also linked in the outer segment.
Example 5: Rule R1 with a subnetwork that is shared by rule R2.

The subnetwork nodes in a rule can be shared by another rule that does not have a subnetwork. This sharing causes the subnetwork segment to be split into two segments.
Constrained Not
nodes and Accumulate
nodes can never unlink a segment, and are always considered to have their bits turned on.
The Phreak evaluation algorithm is stack based instead of method-recursion based. Rule evaluation can be paused and resumed at any time when a StackEntry
is used to represent the node currently being evaluated.
When a rule evaluation reaches a subnetwork, a StackEntry
object is created for the outer path segment and the subnetwork segment. The subnetwork segment is evaluated first, and when the set reaches the end of the subnetwork path, the segment is merged into a staging list for the outer node that the segment feeds into. The previous StackEntry
object is then resumed and can now process the results of the subnetwork. This process has the added benefit, especially for Accumulate
nodes, that all work is completed in a batch, before propagating to the child node.
The same stack system is used for efficient backward chaining. When a rule evaluation reaches a query node, the evaluation is paused and the query is added to the stack. The query is then evaluated to produce a result set, which is saved in a memory location for the resumed StackEntry
object to pick up and propagate to the child node. If the query itself called other queries, the process repeats, while the current query is paused and a new evaluation is set up for the current query node.
4.4.1.1. Rule evaluation with forward and backward chaining
The Drools engine in Drools is a hybrid reasoning system that uses both forward chaining and backward chaining to evaluate rules. A forward-chaining rule system is a data-driven system that starts with a fact in the working memory of the Drools engine and reacts to changes to that fact. When objects are inserted into working memory, any rule conditions that become true as a result of the change are scheduled for execution by the agenda.
In contrast, a backward-chaining rule system is a goal-driven system that starts with a conclusion that the Drools engine attempts to satisfy, often using recursion. If the system cannot reach the conclusion or goal, it searches for subgoals, which are conclusions that complete part of the current goal. The system continues this process until either the initial conclusion is satisfied or all subgoals are satisfied.
The following diagram illustrates how the Drools engine evaluates rules using forward chaining overall with a backward-chaining segment in the logic flow:

4.4.2. Rule base configuration
Drools contains a RuleBaseConfiguration.java
object that you can use to configure exception handler settings, multithreaded execution, and sequential mode in the Drools engine.
For the rule base configuration options, see the Drools RuleBaseConfiguration.java page in GitHub.
The following rule base configuration options are available for the Drools engine:
- drools.consequenceExceptionHandler
-
When configured, this system property defines the class that manages the exceptions thrown by rule consequences. You can use this property to specify a custom exception handler for rule evaluation in the Drools engine.
Default value:
org.drools.core.runtime.rule.impl.DefaultConsequenceExceptionHandler
You can specify the custom exception handler using one of the following options:
-
Specify the exception handler in a system property:
drools.consequenceExceptionHandler=org.drools.core.runtime.rule.impl.MyCustomConsequenceExceptionHandler
-
Specify the exception handler while creating the KIE base programmatically:
KieServices ks = KieServices.Factory.get(); KieBaseConfiguration kieBaseConf = ks.newKieBaseConfiguration(); kieBaseConf.setOption(ConsequenceExceptionHandlerOption.get(MyCustomConsequenceExceptionHandler.class)); KieBase kieBase = kieContainer.newKieBase(kieBaseConf);
-
- drools.multithreadEvaluation
-
When enabled, this system property enables the Drools engine to evaluate rules in parallel by dividing the Phreak rule network into independent partitions. You can use this property to increase the speed of rule evaluation for specific rule bases.
Default value:
false
You can enable multithreaded evaluation using one of the following options:
-
Enable the multithreaded evaluation system property:
drools.multithreadEvaluation=true
-
Enable multithreaded evaluation while creating the KIE base programmatically:
KieServices ks = KieServices.Factory.get(); KieBaseConfiguration kieBaseConf = ks.newKieBaseConfiguration(); kieBaseConf.setOption(MultithreadEvaluationOption.YES); KieBase kieBase = kieContainer.newKieBase(kieBaseConf);
Rules that use queries, salience, or agenda groups are currently not supported by the parallel Drools engine. If these rule elements are present in the KIE base, the compiler emits a warning and automatically switches back to single-threaded evaluation. However, in some cases, the Drools engine might not detect the unsupported rule elements and rules might be evaluated incorrectly. For example, the Drools engine might not detect when rules rely on implicit salience given by rule ordering inside the DRL file, resulting in incorrect evaluation due to the unsupported salience attribute.
-
- drools.sequential
-
When enabled, this system property enables sequential mode in the Drools engine. In sequential mode, the Drools engine evaluates rules one time in the order that they are listed in the Drools engine agenda without regard to changes in the working memory. This means that the Drools engine ignores any
insert
,modify
, orupdate
statements in rules and executes rules in a single sequence. As a result, rule execution may be faster in sequential mode, but important updates may not be applied to your rules. You can use this property if you use stateless KIE sessions and you do not want the execution of rules to influence subsequent rules in the agenda. Sequential mode applies to stateless KIE sessions only.Default value:
false
You can enable sequential mode using one of the following options:
-
Enable the sequential mode system property:
drools.sequential=true
-
Enable sequential mode while creating the KIE base programmatically:
KieServices ks = KieServices.Factory.get(); KieBaseConfiguration kieBaseConf = ks.newKieBaseConfiguration(); kieBaseConf.setOption(SequentialOption.YES); KieBase kieBase = kieContainer.newKieBase(kieBaseConf);
-
Enable sequential mode in the KIE module descriptor file (
kmodule.xml
) for a specific Drools project:<kmodule> ... <kbase name="KBase2" default="false" sequential="true" packages="org.domain.pkg2, org.domain.pkg3" includes="KBase1"> ... </kbase> ... </kmodule>
-
4.4.3. Sequential mode in Phreak
Sequential mode is an advanced rule base configuration in the Drools engine, supported by Phreak, that enables the Drools engine to evaluate rules one time in the order that they are listed in the Drools engine agenda without regard to changes in the working memory. In sequential mode, the Drools engine ignores any insert
, modify
, or update
statements in rules and executes rules in a single sequence. As a result, rule execution may be faster in sequential mode, but important updates may not be applied to your rules.
Sequential mode applies to only stateless KIE sessions because stateful KIE sessions inherently use data from previously invoked KIE sessions. If you use a stateless KIE session and you want the execution of rules to influence subsequent rules in the agenda, then do not enable sequential mode. Sequential mode is disabled by default in the Drools engine.
To enable sequential mode, use one of the following options:
-
Set the system property
drools.sequential
totrue
. -
Enable sequential mode while creating the KIE base programmatically:
KieServices ks = KieServices.Factory.get(); KieBaseConfiguration kieBaseConf = ks.newKieBaseConfiguration(); kieBaseConf.setOption(SequentialOption.YES); KieBase kieBase = kieContainer.newKieBase(kieBaseConf);
-
Enable sequential mode in the KIE module descriptor file (
kmodule.xml
) for a specific Drools project:<kmodule> ... <kbase name="KBase2" default="false" sequential="true" packages="org.domain.pkg2, org.domain.pkg3" includes="KBase1"> ... </kbase> ... </kmodule>
To configure sequential mode to use a dynamic agenda, use one of the following options:
-
Set the system property
drools.sequential.agenda
todynamic
. -
Set the sequential agenda option while creating the KIE base programmatically:
KieServices ks = KieServices.Factory.get(); KieBaseConfiguration kieBaseConf = ks.newKieBaseConfiguration(); kieBaseConf.setOption(SequentialAgendaOption.DYNAMIC); KieBase kieBase = kieContainer.newKieBase(kieBaseConf);
When you enable sequential mode, the Drools engine evaluates rules in the following way:
-
Rules are ordered by salience and position in the rule set.
-
An element for each possible rule match is created. The element position indicates the execution order.
-
Node memory is disabled, with the exception of the right-input object memory.
-
The left-input adapter node propagation is disconnected and the object with the node is referenced in a
Command
object. TheCommand
object is added to a list in the working memory for later execution. -
All objects are asserted, and then the list of
Command
objects is checked and executed. -
All matches that result from executing the list are added to elements based on the sequence number of the rule.
-
The elements that contain matches are executed in a sequence. If you set a maximum number of rule executions, the Drools engine activates no more than that number of rules in the agenda for execution.
In sequential mode, the LeftInputAdapterNode
node creates a Command
object and adds it to a list in the working memory of the Drools engine. This Command
object contains references to the LeftInputAdapterNode
node and the propagated object. These references stop any left-input propagations at insertion time so that the right-input propagation never needs to attempt to join the left inputs. The references also avoid the need for the left-input memory.
All nodes have their memory turned off, including the left-input tuple memory, but excluding the right-input object memory. After all the assertions are finished and the right-input memory of all the objects is populated, the Drools engine iterates over the list of LeftInputAdatperNode
Command
objects. The objects propagate down the network, attempting to join the right-input objects, but they are not retained in the left input.
The agenda with a priority queue to schedule the tuples is replaced by an element for each rule. The sequence number of the RuleTerminalNode
node indicates the element where to place the match. After all Command
objects have finished, the elements are checked and existing matches are executed. To improve performance, the first and the last populated cell in the elements are retained.
When the network is constructed, each RuleTerminalNode
node receives a sequence number based on its salience number and the order in which it was added to the network.
The right-input node memories are typically hash maps for fast object deletion. Because object deletions are not supported, Phreak uses an object list when the values of the object are not indexed. For a large number of objects, indexed hash maps provide a performance increase. If an object has only a few instances, Phreak uses an object list instead of an index.
4.5. Complex event processing (CEP)
In Drools, an event is a record of a significant change of state in the application domain at a point in time. Depending on how the domain is modeled, the change of state may be represented by a single event, multiple atomic events, or hierarchies of correlated events. From a complex event processing (CEP) perspective, an event is a type of fact or object that occurs at a specific point in time, and a business rule is a definition of how to react to the data from that fact or object. For example, in a stock broker application, a change in security prices, a change in ownership from seller to buyer, or a change in an account holder’s balance are all considered to be events because a change has occurred in the state of the application domain at a given time.
The Drools engine in Drools uses complex event processing (CEP) to detect and process multiple events within a collection of events, to uncover relationships that exist between events, and to infer new data from the events and their relationships.
CEP use cases share several requirements and goals with business rule use cases.
From a business perspective, business rule definitions are often defined based on the occurrence of scenarios triggered by events. In the following examples, events form the basis of business rules:
-
In an algorithmic trading application, a rule performs an action if the security price increases by X percent above the day opening price. The price increases are denoted by events on a stock trading application.
-
In a monitoring application, a rule performs an action if the temperature in the server room increases X degrees in Y minutes. The sensor readings are denoted by events.
From a technical perspective, business rule evaluation and CEP have the following key similarities:
-
Both business rule evaluation and CEP require seamless integration with the enterprise infrastructure and applications. This is particularly important with life-cycle management, auditing, and security.
-
Both business rule evaluation and CEP have functional requirements such as pattern matching, and non-functional requirements such as response time limits and query-rule explanations.
CEP scenarios have the following key characteristics:
-
Scenarios usually process large numbers of events, but only a small percentage of the events are relevant.
-
Events are usually immutable and represent a record of change in state.
-
Rules and queries run against events and must react to detected event patterns.
-
Related events usually have a strong temporal relationship.
-
Individual events are not prioritized. The CEP system prioritizes patterns of related events and the relationships between them.
-
Events usually need to be composed and aggregated.
Given these common CEP scenario characteristics, the CEP system in Drools supports the following features and functions to optimize event processing:
-
Event processing with proper semantics
-
Event detection, correlation, aggregation, and composition
-
Event stream processing
-
Temporal constraints to model the temporal relationships between events
-
Sliding windows of significant events
-
Session-scoped unified clock
-
Required volumes of events for CEP use cases
-
Reactive rules
-
Adapters for event input into the Drools engine (pipeline)
4.5.1. Events in complex event processing
In Drools, an event is a record of a significant change of state in the application domain at a point in time. Depending on how the domain is modeled, the change of state may be represented by a single event, multiple atomic events, or hierarchies of correlated events. From a complex event processing (CEP) perspective, an event is a type of fact or object that occurs at a specific point in time, and a business rule is a definition of how to react to the data from that fact or object. For example, in a stock broker application, a change in security prices, a change in ownership from seller to buyer, or a change in an account holder’s balance are all considered to be events because a change has occurred in the state of the application domain at a given time.
Events have the following key characteristics:
-
Are immutable: An event is a record of change that has occurred at some time in the past and cannot be changed.
The Drools engine does not enforce immutability on the Java objects that represent events. This behavior makes event data enrichment possible. Your application should be able to populate unpopulated event attributes, and these attributes are used by the Drools engine to enrich the event with inferred data. However, you should not change event attributes that have already been populated.
-
Have strong temporal constraints: Rules involving events usually require the correlation of multiple events that occur at different points in time relative to each other.
-
Have managed life cycles: Because events are immutable and have temporal constraints, they are usually only relevant for a specified period of time. This means that the Drools engine can automatically manage the life cycle of events.
-
Can use sliding windows: You can define sliding windows of time or length with events. A sliding time window is a specified period of time during which events can be processed. A sliding length window is a specified number of events that can be processed.
4.5.2. Declaring facts as events
You can declare facts as events in your Java class or DRL rule file so that the Drools engine handles the facts as events during complex event processing. You can declare the facts as interval-based events or point-in-time events. Interval-based events have a duration time and persist in the working memory of the Drools engine until their duration time has lapsed. Point-in-time events have no duration and are essentially interval-based events with a duration of zero.
For the relevant fact type in your Java class or DRL rule file, enter the @role( event )
metadata tag and parameter. The @role
metadata tag accepts the following two values:
-
fact
: (Default) Declares the type as a regular fact -
event
: Declares the type as an event
For example, the following snippet declares that the StockPoint
fact type in a stock broker application must be handled as an event:
import some.package.StockPoint
declare StockPoint
@role( event )
end
If StockPoint
is a fact type declared in the DRL rule file instead of in a pre-existing class, you can declare the event in-line in your application code:
declare StockPoint
@role( event )
datetime : java.util.Date
symbol : String
price : double
end
4.5.3. Metadata tags for events
The Drools engine uses the following metadata tags for events that are inserted into the working memory of the Drools engine. You can change the default metadata tag values in your Java class or DRL rule file as needed.
The examples in this section that refer to the VoiceCall fact class in an example Telecom domain model
|
- @role
-
This tag determines whether a given fact type is handled as a regular fact or an event in the Drools engine during complex event processing.
Default parameter:
fact
Supported parameters:
fact
,event
@role( fact | event )
Example: Declare VoiceCall as event typedeclare VoiceCall @role( event ) end
- @timestamp
-
This tag is automatically assigned to every event in the Drools engine. By default, the time is provided by the session clock and assigned to the event when it is inserted into the working memory of the Drools engine. You can specify a custom time stamp attribute instead of the default time stamp added by the session clock.
Default parameter: The time added by the Drools engine session clock
Supported parameters: Session clock time or custom time stamp attribute
@timestamp( <attributeName> )
Example: Declare VoiceCall timestamp attributedeclare VoiceCall @role( event ) @timestamp( callDateTime ) end
- @duration
-
This tag determines the duration time for events in the Drools engine. Events can be interval-based events or point-in-time events. Interval-based events have a duration time and persist in the working memory of the Drools engine until their duration time has lapsed. Point-in-time events have no duration and are essentially interval-based events with a duration of zero. By default, every event in the Drools engine has a duration of zero. You can specify a custom duration attribute instead of the default.
Default parameter: Null (zero)
Supported parameters: Custom duration attribute
@duration( <attributeName> )
Example: Declare VoiceCall duration attributedeclare VoiceCall @role( event ) @timestamp( callDateTime ) @duration( callDuration ) end
- @expires
-
This tag determines the time duration before an event expires in the working memory of the Drools engine. By default, an event expires when the event can no longer match and activate any of the current rules. You can define an amount of time after which an event should expire. This tag definition also overrides the implicit expiration offset calculated from temporal constraints and sliding windows in the KIE base. This tag is available only when the Drools engine is running in stream mode.
Default parameter: Null (event expires after event can no longer match and activate rules)
Supported parameters: Custom
timeOffset
attribute in the format[#d][#h][#m][#s][[ms]]
@expires( <timeOffset> )
Example: Declare expiration offset for VoiceCall eventsdeclare VoiceCall @role( event ) @timestamp( callDateTime ) @duration( callDuration ) @expires( 1h35m ) end
4.5.4. Event processing modes in the Drools engine
The Drools engine runs in either cloud mode or stream mode. In cloud mode, the Drools engine processes facts as facts with no temporal constraints, independent of time, and in no particular order. In stream mode, the Drools engine processes facts as events with strong temporal constraints, in real time or near real time. Stream mode uses synchronization to make event processing possible in Drools.
- Cloud mode
-
Cloud mode is the default operating mode of the Drools engine. In cloud mode, the Drools engine treats events as an unordered cloud. Events still have time stamps, but the Drools engine running in cloud mode cannot draw relevance from the time stamp because cloud mode ignores the present time. This mode uses the rule constraints to find the matching tuples to activate and execute rules.
Cloud mode does not impose any kind of additional requirements on facts. However, because the Drools engine in this mode has no concept of time, it cannot use temporal features such as sliding windows or automatic life-cycle management. In cloud mode, events must be explicitly retracted when they are no longer needed.
The following requirements are not imposed in cloud mode:
-
No clock synchronization because the Drools engine has no notion of time
-
No ordering of events because the Drools engine processes events as an unordered cloud, against which the Drools engine match rules
You can specify cloud mode either by setting the system property in the relevant configuration files or by using the Java client API:
Set cloud mode using system propertydrools.eventProcessingMode=cloud
Set cloud mode using Java client APIimport org.kie.api.conf.EventProcessingOption; import org.kie.api.KieBaseConfiguration; import org.kie.api.KieServices.Factory; KieBaseConfiguration config = KieServices.Factory.get().newKieBaseConfiguration(); config.setOption(EventProcessingOption.CLOUD);
You can also specify cloud mode using the
eventProcessingMode="<mode>"
KIE base attribute in the KIE module descriptor file (kmodule.xml
) for a specific Drools project:Set cloud mode using projectkmodule.xml
file<kmodule> ... <kbase name="KBase2" default="false" eventProcessingMode="cloud" packages="org.domain.pkg2, org.domain.pkg3" includes="KBase1"> ... </kbase> ... </kmodule>
-
- Stream mode
-
Stream mode enables the Drools engine to process events chronologically and in real time as they are inserted into the Drools engine. In stream mode, the Drools engine synchronizes streams of events (so that events in different streams can be processed in chronological order), implements sliding windows of time or length, and enables automatic life-cycle management.
The following requirements apply to stream mode:
-
Events in each stream must be ordered chronologically.
-
A session clock must be present to synchronize event streams.
Your application does not need to enforce ordering events between streams, but using event streams that have not been synchronized may cause unexpected results. You can specify stream mode either by setting the system property in the relevant configuration files or by using the Java client API:
Set stream mode using system propertydrools.eventProcessingMode=stream
Set stream mode using Java client APIimport org.kie.api.conf.EventProcessingOption; import org.kie.api.KieBaseConfiguration; import org.kie.api.KieServices.Factory; KieBaseConfiguration config = KieServices.Factory.get().newKieBaseConfiguration(); config.setOption(EventProcessingOption.STREAM);
You can also specify stream mode using the
eventProcessingMode="<mode>"
KIE base attribute in the KIE module descriptor file (kmodule.xml
) for a specific Drools project:Set stream mode using projectkmodule.xml
file<kmodule> ... <kbase name="KBase2" default="false" eventProcessingMode="stream" packages="org.domain.pkg2, org.domain.pkg3" includes="KBase1"> ... </kbase> ... </kmodule>
-
4.5.4.1. Negative patterns in Drools engine stream mode
A negative pattern is a pattern for conditions that are not met. For example, the following DRL rule activates a fire alarm if a fire is detected and the sprinkler is not activated:
rule "Sound the alarm"
when
$f : FireDetected()
not(SprinklerActivated())
then
// Sound the alarm.
end
In cloud mode, the Drools engine assumes all facts (regular facts and events) are known in advance and evaluates negative patterns immediately. In stream mode, the Drools engine can support temporal constraints on facts to wait for a set time before activating a rule.
The same example rule in stream mode activates the fire alarm as usual, but applies a 10-second delay.
rule "Sound the alarm"
when
$f : FireDetected()
not(SprinklerActivated(this after[0s,10s] $f))
then
// Sound the alarm.
end
The following modified fire alarm rule expects one Heartbeat
event to occur every 10 seconds. If the expected event does not occur, the rule is executed. This rule uses the same type of object in both the first pattern and in the negative pattern. The negative pattern has the temporal constraint to wait 0 to 10 seconds before executing and excludes the Heartbeat
event bound to $h
so that the rule can be executed. The bound event $h
must be explicitly excluded in order for the rule to be executed because the temporal constraint [0s, …]
does not inherently exclude that event from being matched again.
rule "Sound the alarm"
when
$h: Heartbeat() from entry-point "MonitoringStream"
not(Heartbeat(this != $h, this after[0s,10s] $h) from entry-point "MonitoringStream")
then
// Sound the alarm.
end
4.5.5. Property-change settings and listeners for fact types
By default, the Drools engine does not re-evaluate all fact patterns for fact types each time a rule is triggered, but instead reacts only to modified properties that are constrained or bound inside a given pattern. For example, if a rule calls modify()
as part of the rule actions but the action does not generate new data in the KIE base, the Drools engine does not automatically re-evaluate all fact patterns because no data was modified. This property reactivity behavior prevents unwanted recursions in the KIE base and results in more efficient rule evaluation. This behavior also means that you do not always need to use the no-loop
rule attribute to avoid infinite recursion.
You can modify or disable this property reactivity behavior with the following KnowledgeBuilderConfiguration
options, and then use a property-change setting in your Java class or DRL files to fine-tune property reactivity as needed:
-
ALWAYS
: (Default) All types are property reactive, but you can disable property reactivity for a specific type by using the@classReactive
property-change setting. -
ALLOWED
: No types are property reactive, but you can enable property reactivity for a specific type by using the@propertyReactive
property-change setting. -
DISABLED
: No types are property reactive. All property-change listeners are ignored.
KnowledgeBuilderConfiguration config = KnowledgeBuilderFactory.newKnowledgeBuilderConfiguration();
config.setOption(PropertySpecificOption.ALLOWED);
KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder(config);
Alternatively, you can update the drools.propertySpecific
system property in the standalone.xml
file of your Drools distribution:
<system-properties>
...
<property name="drools.propertySpecific" value="ALLOWED"/>
...
</system-properties>
The Drools engine supports the following property-change settings and listeners for fact classes or declared DRL fact types:
- @classReactive
-
If property reactivity is set to
ALWAYS
in the Drools engine (all types are property reactive), this tag disables the default property reactivity behavior for a specific Java class or a declared DRL fact type. You can use this tag if you want the Drools engine to re-evaluate all fact patterns for the specified fact type each time the rule is triggered, instead of reacting only to modified properties that are constrained or bound inside a given pattern.Example: Disable default property reactivity in a DRL type declarationdeclare Person @classReactive firstName : String lastName : String end
Example: Disable default property reactivity in a Java class@classReactive public static class Person { private String firstName; private String lastName; }
- @propertyReactive
-
If property reactivity is set to
ALLOWED
in the Drools engine (no types are property reactive unless specified), this tag enables property reactivity for a specific Java class or a declared DRL fact type. You can use this tag if you want the Drools engine to react only to modified properties that are constrained or bound inside a given pattern for the specified fact type, instead of re-evaluating all fact patterns for the fact each time the rule is triggered.Example: Enable property reactivity in a DRL type declaration (when reactivity is disabled globally)declare Person @propertyReactive firstName : String lastName : String end
Example: Enable property reactivity in a Java class (when reactivity is disabled globally)@propertyReactive public static class Person { private String firstName; private String lastName; }
- @watch
-
This tag enables property reactivity for additional properties that you specify in-line in fact patterns in DRL rules. This tag is supported only if property reactivity is set to
ALWAYS
in the Drools engine, or if property reactivity is set toALLOWED
and the relevant fact type uses the@propertyReactive
tag. You can use this tag in DRL rules to add or exclude specific properties in fact property reactivity logic.Default parameter: None
Supported parameters: Property name,
*
(all),!
(not),!*
(no properties)<factPattern> @watch ( <property> )
Example: Enable or disable property reactivity in fact patterns// Listens for changes in both `firstName` (inferred) and `lastName`: Person(firstName == $expectedFirstName) @watch( lastName ) // Listens for changes in all properties of the `Person` fact: Person(firstName == $expectedFirstName) @watch( * ) // Listens for changes in `lastName` and explicitly excludes changes in `firstName`: Person(firstName == $expectedFirstName) @watch( lastName, !firstName ) // Listens for changes in all properties of the `Person` fact except `age`: Person(firstName == $expectedFirstName) @watch( *, !age ) // Excludes changes in all properties of the `Person` fact (equivalent to using `@classReactivity` tag): Person(firstName == $expectedFirstName) @watch( !* )
The Drools engine generates a compilation error if you use the
@watch
tag for properties in a fact type that uses the@classReactive
tag (disables property reactivity) or when property reactivity is set toALLOWED
in the Drools engine and the relevant fact type does not use the@propertyReactive
tag. Compilation errors also arise if you duplicate properties in listener annotations, such as@watch( firstName, ! firstName )
. - @propertyChangeSupport
-
For facts that implement support for property changes as defined in the JavaBeans Specification, this tag enables the Drools engine to monitor changes in the fact properties.
Example: Declare property change support in JavaBeans objectdeclare Person @propertyChangeSupport end
4.5.6. Temporal operators for events
In stream mode, the Drools engine supports the following temporal operators for events that are inserted into the working memory of the Drools engine. You can use these operators to define the temporal reasoning behavior of the events that you declare in your Java class or DRL rule file. Temporal operators are not supported when the Drools engine is running in cloud mode.
-
after
-
before
-
coincides
-
during
-
includes
-
finishes
-
finished by
-
meets
-
met by
-
overlaps
-
overlapped by
-
starts
-
started by
- after
-
This operator specifies if the current event occurs after the correlated event. This operator can also define an amount of time after which the current event can follow the correlated event, or a delimiting time range during which the current event can follow the correlated event.
For example, the following pattern matches if
$eventA
starts between 3 minutes and 30 seconds and 4 minutes after$eventB
finishes. If$eventA
starts earlier than 3 minutes and 30 seconds after$eventB
finishes, or later than 4 minutes after$eventB
finishes, then the pattern is not matched.$eventA : EventA(this after[3m30s, 4m] $eventB)
You can also express this operator in the following way:
3m30s <= $eventA.startTimestamp - $eventB.endTimeStamp <= 4m
The
after
operator supports up to two parameter values:-
If two values are defined, the interval starts on the first value (3 minutes and 30 seconds in the example) and ends on the second value (4 minutes in the example).
-
If only one value is defined, the interval starts on the provided value and runs indefinitely with no end time.
-
If no value is defined, the interval starts at 1 millisecond and runs indefinitely with no end time.
The
after
operator also supports negative time ranges:$eventA : EventA(this after[-3m30s, -2m] $eventB)
If the first value is greater than the second value, the Drools engine automatically reverses them. For example, the following two patterns are interpreted by the Drools engine in the same way:
$eventA : EventA(this after[-3m30s, -2m] $eventB) $eventA : EventA(this after[-2m, -3m30s] $eventB)
-
- before
-
This operator specifies if the current event occurs before the correlated event. This operator can also define an amount of time before which the current event can precede the correlated event, or a delimiting time range during which the current event can precede the correlated event.
For example, the following pattern matches if
$eventA
finishes between 3 minutes and 30 seconds and 4 minutes before$eventB
starts. If$eventA
finishes earlier than 3 minutes and 30 seconds before$eventB
starts, or later than 4 minutes before$eventB
starts, then the pattern is not matched.$eventA : EventA(this before[3m30s, 4m] $eventB)
You can also express this operator in the following way:
3m30s <= $eventB.startTimestamp - $eventA.endTimeStamp <= 4m
The
before
operator supports up to two parameter values:-
If two values are defined, the interval starts on the first value (3 minutes and 30 seconds in the example) and ends on the second value (4 minutes in the example).
-
If only one value is defined, the interval starts on the provided value and runs indefinitely with no end time.
-
If no value is defined, the interval starts at 1 millisecond and runs indefinitely with no end time.
The
before
operator also supports negative time ranges:$eventA : EventA(this before[-3m30s, -2m] $eventB)
If the first value is greater than the second value, the Drools engine automatically reverses them. For example, the following two patterns are interpreted by the Drools engine in the same way:
$eventA : EventA(this before[-3m30s, -2m] $eventB) $eventA : EventA(this before[-2m, -3m30s] $eventB)
-
- coincides
-
This operator specifies if the two events occur at the same time, with the same start and end times.
For example, the following pattern matches if both the start and end time stamps of
$eventA
and$eventB
are identical:$eventA : EventA(this coincides $eventB)
The
coincides
operator supports up to two parameter values for the distance between the event start and end times, if they are not identical:-
If only one parameter is given, the parameter is used to set the threshold for both the start and end times of both events.
-
If two parameters are given, the first is used as a threshold for the start time and the second is used as a threshold for the end time.
The following pattern uses start and end time thresholds:
$eventA : EventA(this coincides[15s, 10s] $eventB)
The pattern matches if the following conditions are met:
abs($eventA.startTimestamp - $eventB.startTimestamp) <= 15s && abs($eventA.endTimestamp - $eventB.endTimestamp) <= 10s
The Drools engine does not support negative intervals for the coincides
operator. If you use negative intervals, the Drools engine generates an error. -
- during
-
This operator specifies if the current event occurs within the time frame of when the correlated event starts and ends. The current event must start after the correlated event starts and must end before the correlated event ends. (With the
coincides
operator, the start and end times are the same or nearly the same.)For example, the following pattern matches if
$eventA
starts after$eventB
starts and ends before$eventB
ends:$eventA : EventA(this during $eventB)
You can also express this operator in the following way:
$eventB.startTimestamp < $eventA.startTimestamp <= $eventA.endTimestamp < $eventB.endTimestamp
The
during
operator supports one, two, or four optional parameters:-
If one value is defined, this value is the maximum distance between the start times of the two events and the maximum distance between the end times of the two events.
-
If two values are defined, these values are a threshold between which the current event start time and end time must occur in relation to the correlated event start and end times.
For example, if the values are
5s
and10s
, the current event must start between 5 and 10 seconds after the correlated event starts and must end between 5 and 10 seconds before the correlated event ends. -
If four values are defined, the first and second values are the minimum and maximum distances between the start times of the events, and the third and fourth values are the minimum and maximum distances between the end times of the two events.
-
- includes
-
This operator specifies if the correlated event occurs within the time frame of when the current event occurs. The correlated event must start after the current event starts and must end before the current event ends. (The behavior of this operator is the reverse of the
during
operator behavior.)For example, the following pattern matches if
$eventB
starts after$eventA
starts and ends before$eventA
ends:$eventA : EventA(this includes $eventB)
You can also express this operator in the following way:
$eventA.startTimestamp < $eventB.startTimestamp <= $eventB.endTimestamp < $eventA.endTimestamp
The
includes
operator supports one, two, or four optional parameters:-
If one value is defined, this value is the maximum distance between the start times of the two events and the maximum distance between the end times of the two events.
-
If two values are defined, these values are a threshold between which the correlated event start time and end time must occur in relation to the current event start and end times.
For example, if the values are
5s
and10s
, the correlated event must start between 5 and 10 seconds after the current event starts and must end between 5 and 10 seconds before the current event ends. -
If four values are defined, the first and second values are the minimum and maximum distances between the start times of the events, and the third and fourth values are the minimum and maximum distances between the end times of the two events.
-
- finishes
-
This operator specifies if the current event starts after the correlated event but both events end at the same time.
For example, the following pattern matches if
$eventA
starts after$eventB
starts and ends at the same time when$eventB
ends:$eventA : EventA(this finishes $eventB)
You can also express this operator in the following way:
$eventB.startTimestamp < $eventA.startTimestamp && $eventA.endTimestamp == $eventB.endTimestamp
The
finishes
operator supports one optional parameter that sets the maximum time allowed between the end times of the two events:$eventA : EventA(this finishes[5s] $eventB)
This pattern matches if these conditions are met:
$eventB.startTimestamp < $eventA.startTimestamp && abs($eventA.endTimestamp - $eventB.endTimestamp) <= 5s
The Drools engine does not support negative intervals for the finishes
operator. If you use negative intervals, the Drools engine generates an error. - finished by
-
This operator specifies if the correlated event starts after the current event but both events end at the same time. (The behavior of this operator is the reverse of the
finishes
operator behavior.)For example, the following pattern matches if
$eventB
starts after$eventA
starts and ends at the same time when$eventA
ends:$eventA : EventA(this finishedby $eventB)
You can also express this operator in the following way:
$eventA.startTimestamp < $eventB.startTimestamp && $eventA.endTimestamp == $eventB.endTimestamp
The
finished by
operator supports one optional parameter that sets the maximum time allowed between the end times of the two events:$eventA : EventA(this finishedby[5s] $eventB)
This pattern matches if these conditions are met:
$eventA.startTimestamp < $eventB.startTimestamp && abs($eventA.endTimestamp - $eventB.endTimestamp) <= 5s
The Drools engine does not support negative intervals for the finished by
operator. If you use negative intervals, the Drools engine generates an error. - meets
-
This operator specifies if the current event ends at the same time when the correlated event starts.
For example, the following pattern matches if
$eventA
ends at the same time when$eventB
starts:$eventA : EventA(this meets $eventB)
You can also express this operator in the following way:
abs($eventB.startTimestamp - $eventA.endTimestamp) == 0
The
meets
operator supports one optional parameter that sets the maximum time allowed between the end time of the current event and the start time of the correlated event:$eventA : EventA(this meets[5s] $eventB)
This pattern matches if these conditions are met:
abs($eventB.startTimestamp - $eventA.endTimestamp) <= 5s
The Drools engine does not support negative intervals for the meets
operator. If you use negative intervals, the Drools engine generates an error. - met by
-
This operator specifies if the correlated event ends at the same time when the current event starts. (The behavior of this operator is the reverse of the
meets
operator behavior.)For example, the following pattern matches if
$eventB
ends at the same time when$eventA
starts:$eventA : EventA(this metby $eventB)
You can also express this operator in the following way:
abs($eventA.startTimestamp - $eventB.endTimestamp) == 0
The
met by
operator supports one optional parameter that sets the maximum distance between the end time of the correlated event and the start time of the current event:$eventA : EventA(this metby[5s] $eventB)
This pattern matches if these conditions are met:
abs($eventA.startTimestamp - $eventB.endTimestamp) <= 5s
The Drools engine does not support negative intervals for the met by
operator. If you use negative intervals, the Drools engine generates an error. - overlaps
-
This operator specifies if the current event starts before the correlated event starts and it ends during the time frame that the correlated event occurs. The current event must end between the start and end times of the correlated event.
For example, the following pattern matches if
$eventA
starts before$eventB
starts and then ends while$eventB
occurs, before$eventB
ends:$eventA : EventA(this overlaps $eventB)
The
overlaps
operator supports up to two parameters:-
If one parameter is defined, the value is the maximum distance between the start time of the correlated event and the end time of the current event.
-
If two parameters are defined, the values are the minimum distance (first value) and the maximum distance (second value) between the start time of the correlated event and the end time of the current event.
-
- overlapped by
-
This operator specifies if the correlated event starts before the current event starts and it ends during the time frame that the current event occurs. The correlated event must end between the start and end times of the current event. (The behavior of this operator is the reverse of the
overlaps
operator behavior.)For example, the following pattern matches if
$eventB
starts before$eventA
starts and then ends while$eventA
occurs, before$eventA
ends:$eventA : EventA(this overlappedby $eventB)
The
overlapped by
operator supports up to two parameters:-
If one parameter is defined, the value is the maximum distance between the start time of the current event and the end time of the correlated event.
-
If two parameters are defined, the values are the minimum distance (first value) and the maximum distance (second value) between the start time of the current event and the end time of the correlated event.
-
- starts
-
This operator specifies if the two events start at the same time but the current event ends before the correlated event ends.
For example, the following pattern matches if
$eventA
and$eventB
start at the same time, and$eventA
ends before$eventB
ends:$eventA : EventA(this starts $eventB)
You can also express this operator in the following way:
$eventA.startTimestamp == $eventB.startTimestamp && $eventA.endTimestamp < $eventB.endTimestamp
The
starts
operator supports one optional parameter that sets the maximum distance between the start times of the two events:$eventA : EventA(this starts[5s] $eventB)
This pattern matches if these conditions are met:
abs($eventA.startTimestamp - $eventB.startTimestamp) <= 5s && $eventA.endTimestamp < $eventB.endTimestamp
The Drools engine does not support negative intervals for the starts
operator. If you use negative intervals, the Drools engine generates an error. - started by
-
This operator specifies if the two events start at the same time but the correlated event ends before the current event ends. (The behavior of this operator is the reverse of the
starts
operator behavior.)For example, the following pattern matches if
$eventA
and$eventB
start at the same time, and$eventB
ends before$eventA
ends:$eventA : EventA(this startedby $eventB)
You can also express this operator in the following way:
$eventA.startTimestamp == $eventB.startTimestamp && $eventA.endTimestamp > $eventB.endTimestamp
The
started by
operator supports one optional parameter that sets the maximum distance between the start times of the two events:$eventA : EventA( this starts[5s] $eventB)
This pattern matches if these conditions are met:
abs( $eventA.startTimestamp - $eventB.startTimestamp ) <= 5s && $eventA.endTimestamp > $eventB.endTimestamp
The Drools engine does not support negative intervals for the started by
operator. If you use negative intervals, the Drools engine generates an error.
4.5.7. Session clock implementations in the Drools engine
During complex event processing, events in the Drools engine may have temporal constraints and therefore require a session clock that provides the current time. For example, if a rule needs to determine the average price of a given stock over the last 60 minutes, the Drools engine must be able to compare the stock price event time stamp with the current time in the session clock.
The Drools engine supports a real-time clock and a pseudo clock. You can use one or both clock types depending on the scenario:
-
Rules testing: Testing requires a controlled environment, and when the tests include rules with temporal constraints, you must be able to control the input rules and facts and the flow of time.
-
Regular execution: The Drools engine reacts to events in real time and therefore requires a real-time clock.
-
Special environments: Specific environments may have specific time control requirements. For example, clustered environments may require clock synchronization or Java Enterprise Edition (JEE) environments may require a clock provided by the application server.
-
Rules replay or simulation: In order to replay or simulate scenarios, the application must be able to control the flow of time.
Consider your environment requirements as you decide whether to use a real-time clock or pseudo clock in the Drools engine.
- Real-time clock
-
The real-time clock is the default clock implementation in the Drools engine and uses the system clock to determine the current time for time stamps. To configure the Drools engine to use the real-time clock, set the KIE session configuration parameter to
realtime
:Configure real-time clock in KIE sessionimport org.kie.api.KieServices.Factory; import org.kie.api.runtime.conf.ClockTypeOption; import org.kie.api.runtime.KieSessionConfiguration; KieSessionConfiguration config = KieServices.Factory.get().newKieSessionConfiguration(); config.setOption(ClockTypeOption.get("realtime"));
- Pseudo clock
-
The pseudo clock implementation in the Drools engine is helpful for testing temporal rules and it can be controlled by the application. To configure the Drools engine to use the pseudo clock, set the KIE session configuration parameter to
pseudo
:Configure pseudo clock in KIE sessionimport org.kie.api.runtime.conf.ClockTypeOption; import org.kie.api.runtime.KieSessionConfiguration; import org.kie.api.KieServices.Factory; KieSessionConfiguration config = KieServices.Factory.get().newKieSessionConfiguration(); config.setOption(ClockTypeOption.get("pseudo"));
You can also use additional configurations and fact handlers to control the pseudo clock:
Control pseudo clock behavior in KIE sessionimport java.util.concurrent.TimeUnit; import org.kie.api.runtime.KieSessionConfiguration; import org.kie.api.KieServices.Factory; import org.kie.api.runtime.KieSession; import org.drools.core.time.SessionPseudoClock; import org.kie.api.runtime.rule.FactHandle; import org.kie.api.runtime.conf.ClockTypeOption; KieSessionConfiguration conf = KieServices.Factory.get().newKieSessionConfiguration(); conf.setOption( ClockTypeOption.get("pseudo")); KieSession session = kbase.newKieSession(conf, null); SessionPseudoClock clock = session.getSessionClock(); // While inserting facts, advance the clock as necessary. FactHandle handle1 = session.insert(tick1); clock.advanceTime(10, TimeUnit.SECONDS); FactHandle handle2 = session.insert(tick2); clock.advanceTime(30, TimeUnit.SECONDS); FactHandle handle3 = session.insert(tick3);
4.5.8. Event streams and entry points
The Drools engine can process high volumes of events in the form of event streams. In DRL rule declarations, a stream is also known as an entry point. When you declare an entry point in a DRL rule or Java application, the Drools engine, at compile time, identifies and creates the proper internal structures to use data from only that entry point to evaluate that rule.
Facts from one entry point, or stream, can join facts from any other entry point in addition to facts already in the working memory of the Drools engine. Facts always remain associated with the entry point through which they entered the Drools engine. Facts of the same type can enter the Drools engine through several entry points, but facts that enter the Drools engine through entry point A can never match a pattern from entry point B.
Event streams have the following characteristics:
-
Events in the stream are ordered by time stamp. The time stamps may have different semantics for different streams, but they are always ordered internally.
-
Event streams usually have a high volume of events.
-
Atomic events in streams are usually not useful individually, only collectively in a stream.
-
Event streams can be homogeneous and contain a single type of event, or heterogeneous and contain events of different types.
4.5.8.1. Declaring entry points for rule data
You can declare an entry point (event stream) for events so that the Drools engine uses data from only that entry point to evaluate the rules. You can declare an entry point either implicitly by referencing it in DRL rules or explicitly in your Java application.
Use one of the following methods to declare the entry point:
-
In the DRL rule file, specify
from entry-point "<name>"
for the inserted fact:Authorize withdrawal rule with "ATM Stream" entry pointrule "Authorize withdrawal" when WithdrawRequest($ai : accountId, $am : amount) from entry-point "ATM Stream" CheckingAccount(accountId == $ai, balance > $am) then // Authorize withdrawal. end
Apply fee rule with "Branch Stream" entry pointrule "Apply fee on withdraws on branches" when WithdrawRequest($ai : accountId, processed == true) from entry-point "Branch Stream" CheckingAccount(accountId == $ai) then // Apply a $2 fee on the account. end
Both example DRL rules from a banking application insert the event
WithdrawalRequest
with the factCheckingAccount
, but from different entry points. At run time, the Drools engine evaluates theAuthorize withdrawal
rule using data from only the"ATM Stream"
entry point, and evaluates theApply fee
rule using data from only the"Branch Stream"
entry point. Any events inserted into the"ATM Stream"
can never match patterns for the"Apply fee"
rule, and any events inserted into the"Branch Stream"
can never match patterns for the"Authorize withdrawal rule"
. -
In the Java application code, use the
getEntryPoint()
method to specify and obtain anEntryPoint
object and insert facts into that entry point accordingly:Java application code with EntryPoint object and inserted factsimport org.kie.api.runtime.KieSession; import org.kie.api.runtime.rule.EntryPoint; // Create your KIE base and KIE session as usual. KieSession session = ... // Create a reference to the entry point. EntryPoint atmStream = session.getEntryPoint("ATM Stream"); // Start inserting your facts into the entry point. atmStream.insert(aWithdrawRequest);
Any DRL rules that specify
from entry-point "ATM Stream"
are then evaluated based on the data in this entry point only.
4.5.9. Sliding windows of time or length
In stream mode, the Drools engine can process events from a specified sliding window of time or length. A sliding time window is a specified period of time during which events can be processed. A sliding length window is a specified number of events that can be processed. When you declare a sliding window in a DRL rule or Java application, the Drools engine, at compile time, identifies and creates the proper internal structures to use data from only that sliding window to evaluate that rule.
For example, the following DRL rule snippets instruct the Drools engine to process only the stock points from the last 2 minutes (sliding time window) or to process only the last 10 stock points (sliding length window):
StockPoint() over window:time(2m)
StockPoint() over window:length(10)
4.5.9.1. Declaring sliding windows for rule data
You can declare a sliding window of time (flow of time) or length (number of occurrences) for events so that the Drools engine uses data from only that window to evaluate the rules.
In the DRL rule file, specify over window:<time_or_length>(<value>)
for the inserted fact.
For example, the following two DRL rules activate a fire alarm based on an average temperature. However, the first rule uses a sliding time window to calculate the average over the last 10 minutes while the second rule uses a sliding length window to calculate the average over the last one hundred temperature readings.
rule "Sound the alarm if temperature rises above threshold"
when
TemperatureThreshold($max : max)
Number(doubleValue > $max) from accumulate(
SensorReading($temp : temperature) over window:time(10m),
average($temp))
then
// Sound the alarm.
end
rule "Sound the alarm if temperature rises above threshold"
when
TemperatureThreshold($max : max)
Number(doubleValue > $max) from accumulate(
SensorReading($temp : temperature) over window:length(100),
average($temp))
then
// Sound the alarm.
end
The Drools engine discards any SensorReading
events that are more than 10 minutes old or that are not part of the last one hundred readings, and continues recalculating the average as the minutes or readings "slide" forward in real time.
The Drools engine does not automatically remove outdated events from the KIE session because other rules without sliding window declarations might depend on those events. The Drools engine stores events in the KIE session until the events expire either by explicit rule declarations or by implicit reasoning within the Drools engine based on inferred data in the KIE base.
4.5.10. Memory management for events
In stream mode, the Drools engine uses automatic memory management to maintain events that are stored in KIE sessions. The Drools engine can retract from a KIE session any events that no longer match any rule due to their temporal constraints and release any resources held by the retracted events.
The Drools engine uses either explicit or inferred expiration to retract outdated events:
-
Explicit expiration: The Drools engine removes events that are explicitly set to expire in rules that declare the
@expires
tag:DRL rule snippet with explicit expirationdeclare StockPoint @expires( 30m ) end
This example rule sets any
StockPoint
events to expire after 30 minutes and to be removed from the KIE session if no other rules use the events. -
Inferred expiration: The Drools engine can calculate the expiration offset for a given event implicitly by analyzing the temporal constraints in the rules:
DRL rule with temporal constraintsrule "Correlate orders" when $bo : BuyOrder($id : id) $ae : AckOrder(id == $id, this after[0,10s] $bo) then // Perform an action. end
For this example rule, the Drools engine automatically calculates that whenever a
BuyOrder
event occurs, the Drools engine needs to store the event for up to 10 seconds and wait for the matchingAckOrder
event. After 10 seconds, the Drools engine infers the expiration and removes the event from the KIE session. AnAckOrder
event can only match an existingBuyOrder
event, so the Drools engine infers the expiration if no match occurs and removes the event immediately.The Drools engine analyzes the entire KIE base to find the offset for every event type and to ensure that no other rules use the events that are pending removal. Whenever an implicit expiration clashes with an explicit expiration value, the Drools engine uses the greater time frame of the two to store the event longer.
4.6. Drools engine queries and live queries
You can use queries with the Drools engine to retrieve fact sets based on fact patterns as they are used in rules. The patterns might also use optional parameters.
To use queries with the Drools engine, you add the query definitions in DRL files and then obtain the matching results in your application code. While a query iterates over a result collection, you can use any identifier that is bound to the query to access the corresponding fact or fact field by calling the get()
method with the binding variable name as the argument. If the binding refers to a fact object, you can retrieve the fact handle by calling getFactHandle()
with the variable name as the parameter.


query "people under the age of 21"
$person : Person( age < 21 )
end
QueryResults results = ksession.getQueryResults( "people under the age of 21" );
System.out.println( "we have " + results.size() + " people under the age of 21" );
System.out.println( "These people are under the age of 21:" );
for ( QueryResultsRow row : results ) {
Person person = ( Person ) row.get( "person" );
System.out.println( person.getName() + "\n" );
}
Invoking queries and processing the results by iterating over the returned set can be difficult when you are monitoring changes over time. To alleviate this difficulty with ongoing queries, Drools provides live queries, which use an attached listener for change events instead of returning an iterable result set. Live queries remain open by creating a view and publishing change events for the contents of this view.
To activate a live query, start your query with parameters and monitor changes in the resulting view. You can use the dispose()
method to terminate the query and discontinue this reactive scenario.
query colors(String $color1, String $color2)
TShirt(mainColor = $color1, secondColor = $color2, $price: manufactureCost)
end
final List updated = new ArrayList();
final List removed = new ArrayList();
final List added = new ArrayList();
ViewChangedEventListener listener = new ViewChangedEventListener() {
public void rowUpdated(Row row) {
updated.add( row.get( "$price" ) );
}
public void rowRemoved(Row row) {
removed.add( row.get( "$price" ) );
}
public void rowAdded(Row row) {
added.add( row.get( "$price" ) );
}
};
// Open the live query:
LiveQuery query = ksession.openLiveQuery( "colors",
new Object[] { "red", "blue" },
listener );
...
...
// Terminate the live query:
query.dispose()
For more live query examples, see Glazed Lists examples for Drools Live Queries.
4.7. Drools engine event listeners and debug logging
The Drools engine generates events when performing activities such as fact insertions and rule executions. If you register event listeners, the Drools engine calls every listener when an activity is performed.
Event listeners have methods that correspond to different types of activities. The Drools engine passes an event object to each method; this object contains information about the specific activity.
Your code can implement custom event listeners and you can also add and remove registered event listeners. In this way, your code can be notified of Drools engine activity, and you can separate logging and auditing work from the core of your application.
The Drools engine supports the following event listeners with the following methods:
public interface AgendaEventListener
extends
EventListener {
void matchCreated(MatchCreatedEvent event);
void matchCancelled(MatchCancelledEvent event);
void beforeMatchFired(BeforeMatchFiredEvent event);
void afterMatchFired(AfterMatchFiredEvent event);
void agendaGroupPopped(AgendaGroupPoppedEvent event);
void agendaGroupPushed(AgendaGroupPushedEvent event);
void beforeRuleFlowGroupActivated(RuleFlowGroupActivatedEvent event);
void afterRuleFlowGroupActivated(RuleFlowGroupActivatedEvent event);
void beforeRuleFlowGroupDeactivated(RuleFlowGroupDeactivatedEvent event);
void afterRuleFlowGroupDeactivated(RuleFlowGroupDeactivatedEvent event);
}
public interface RuleRuntimeEventListener extends EventListener {
void objectInserted(ObjectInsertedEvent event);
void objectUpdated(ObjectUpdatedEvent event);
void objectDeleted(ObjectDeletedEvent event);
}
For the definitions of event classes, see the GitHub repository.
Drools includes default implementations of these listeners: DefaultAgendaEventListener
and DefaultRuleRuntimeEventListener
. You can extend each of these implementations to monitor specific events.
For example, the following code extends DefaultAgendaEventListener
to monitor the AfterMatchFiredEvent
event and attaches this listener to a KIE session. The code prints pattern matches when rules are executed (fired):
AfterMatchFiredEvent
events in the agendaksession.addEventListener( new DefaultAgendaEventListener() {
public void afterMatchFired(AfterMatchFiredEvent event) {
super.afterMatchFired( event );
System.out.println( event );
}
});
Drools also includes the following Drools engine agenda and rule runtime event listeners for debug logging:
-
DebugAgendaEventListener
-
DebugRuleRuntimeEventListener
These event listeners implement the same supported event-listener methods and include a debug print statement by default. You can add additional monitoring code for a specific supported event.
For example, the following code uses the DebugRuleRuntimeEventListener
event listener to monitor and print all working memory (rule runtime) events:
ksession.addEventListener( new DebugRuleRuntimeEventListener() );
4.7.1. Practices for development of event listeners
The Drools engine calls event listeners during rule processing. The calls block the execution of the Drools engine. Therefore, the event listener can affect the performance of the Drools engine.
To ensure minimal disruption, follow the following guidelines:
-
Any action must be as short as possible.
-
A listener class must not have a state. The Drools engine can destroy and re-create a listener class at any time.
-
Do not use logic that relies on the order of execution of different event listeners.
-
Do not include interactions with different entities outside the Drools engine within a listener. For example, do not include REST calls for notification of events. An exception is the output of logging information; however, a logging listener must be as simple as possible.
-
You can use a listener to modify the state of the Drools engine, for example, to change the values of variables.
4.7.2. Configuring a logging utility in the Drools engine
The Drools engine uses the Java logging API SLF4J for system logging. You can use one of the following logging utilities with the Drools engine to investigate Drools engine activity, such as for troubleshooting or data gathering:
-
Logback
-
Apache Commons Logging
-
Apache Log4j
-
java.util.logging
package
For the logging utility that you want to use, add the relevant dependency to your Maven project or save the relevant XML configuration file in the org.drools
package of your Drools distribution:
<dependency>
<groupId>ch.qos.logback</groupId>
<artifactId>logback-classic</artifactId>
<version>${logback.version}</version>
</dependency>
<configuration>
<logger name="org.drools" level="debug"/>
...
<configuration>
<log4j:configuration xmlns:log4j="http://jakarta.apache.org/log4j/">
<category name="org.drools">
<priority value="debug" />
</category>
...
</log4j:configuration>
If you are developing for an ultra light environment, use the slf4j-nop or slf4j-simple logger.
|
4.8. Performance tuning considerations with the Drools engine
The following key concepts or suggested practices can help you optimize Drools engine performance. These concepts are summarized in this section as a convenience and are explained in more detail in the cross-referenced documentation, where applicable. This section will expand or change as needed with new releases of Drools.
- Use sequential mode for stateless KIE sessions that do not require important Drools engine updates
-
Sequential mode is an advanced rule base configuration in the Drools engine that enables the Drools engine to evaluate rules one time in the order that they are listed in the Drools engine agenda without regard to changes in the working memory. As a result, rule execution may be faster in sequential mode, but important updates may not be applied to your rules. Sequential mode applies to stateless KIE sessions only.
To enable sequential mode, set the system property
drools.sequential
totrue
.For more information about sequential mode or other options for enabling it, see Sequential mode in Phreak.
- Use simple operations with event listeners
-
Limit the number of event listeners and the type of operations they perform. Use event listeners for simple operations, such as debug logging and setting properties. Complicated operations, such as network calls, in listeners can impede rule execution. After you finish working with a KIE session, remove the attached event listeners so that the session can be cleaned, as shown in the following example:
Example event listener removed after useListener listener = ...; StatelessKnowledgeSession ksession = createSession(); try { ksession.insert(fact); ksession.fireAllRules(); ... } finally { if (session != null) { ksession.detachListener(listener); ksession.dispose(); } }
For information about built-in event listeners and debug logging in the Drools engine, see Drools engine event listeners and debug logging.
- Configure
LambdaIntrospector
cache size for an executable model build -
You can configure the size of
LambdaIntrospector.methodFingerprintsMap
cache, which is used in an executable model build. The default size of the cache is32
. When you configure smaller value for the cache size, it reduces memory usage. For example, you can configure system propertydrools.lambda.introspector.cache.size
to0
for minimum memory usage. Note that smaller cache size also slows down the build performance. - Use lambda externalization for executable model
-
Enable lambda externalization to optimize the memory consumption during runtime. It rewrites lambdas that are generated and used in the executable model. This enables you to reuse the same lambda multiple times with all the patterns and the same constraint. When the rete or phreak is instantiated, the executable model becomes garbage collectible.
To enable lambda externalization for the executable model, include the following property:
-Ddrools.externaliseCanonicalModelLambda=true
- Configure alpha node range index threshold
-
Alpha node range index is used to evaluate the rule constraint. You can configure the threshold of the alpha node range index using the
drools.alphaNodeRangeIndexThreshold
system property. The default value of the threshold is9
, indicating that the alpha node range index is enabled when a precedent node contains more than nine alpha nodes with inequality constraints. For example, when you have nine rules similar toPerson(age > 10)
,Person(age > 20)
, …,Person(age > 90)
, then you can have similar nine alpha nodes.The default value of the threshold is based on the related advantages and overhead. However, if you configure a smaller value for the threshold, then the performance can be improved depending on your rules. For example, you can configure the
drools.alphaNodeRangeIndexThreshold
value to6
, enabling the alpha node range index when you have more than six alpha nodes for a precedent node. You can set a suitable value for the threshold based on the performance test results of your rules. - Enable join node range index
-
The join node range index feature improves the performance only when there is a large number of facts to be joined, for example, 256*16 combinations. When your application inserts a large number of facts, you can enable the join node range index and evaluate the performance improvement. By default, the join node range index is disabled.
Examplekmodule.xml
file<kbase name="KBase1" betaRangeIndex="enabled">
System property forBetaRangeIndexOption
drools.betaNodeRangeIndexEnabled=true
5. Rule Language Reference
5.1. DRL (Drools Rule Language) rules
DRL (Drools Rule Language) rules are business rules that you define directly in .drl
text files. These DRL files are the source in which all other rule assets in Business Central are ultimately rendered. You can create and manage DRL files within the Business Central interface, or create them externally as part of a Maven or Java project using Red Hat CodeReady Studio or another integrated development environment (IDE). A DRL file can contain one or more rules that define at a minimum the rule conditions (when
) and actions (then
). The DRL designer in Business Central provides syntax highlighting for Java, DRL, and XML.
DRL files consist of the following components:
package
import
function // Optional
query // Optional
declare // Optional
global // Optional
rule "rule name"
// Attributes
when
// Conditions
then
// Actions
end
rule "rule2 name"
...
The following example DRL rule determines the age limit in a loan application decision service:
rule "Underage"
salience 15
agenda-group "applicationGroup"
when
$application : LoanApplication()
Applicant( age < 21 )
then
$application.setApproved( false );
$application.setExplanation( "Underage" );
end
A DRL file can contain single or multiple rules, queries, and functions, and can define resource declarations such as imports, globals, and attributes that are assigned and used by your rules and queries. The DRL package must be listed at the top of a DRL file and the rules are typically listed last. All other DRL components can follow any order.
Each rule must have a unique name within the rule package. If you use the same rule name more than once in any DRL file in the package, the rules fail to compile. Always enclose rule names with double quotation marks (rule "rule name"
) to prevent possible compilation errors, especially if you use spaces in rule names.
All data objects related to a DRL rule must be in the same project package as the DRL file in Business Central. Assets in the same package are imported by default. Existing assets in other packages can be imported with the DRL rule.
5.1.1. Packages in DRL
A package is a folder of related assets in Drools, such as data objects, DRL files, decision tables, and other asset types. A package also serves as a unique namespace for each group of rules. A single rule base can contain multiple packages. You typically store all the rules for a package in the same file as the package declaration so that the package is self-contained. However, you can import objects from other packages that you want to use in the rules.
The following example is a package name and namespace for a DRL file in a mortgage application decision service:
package org.mortgages;
The following railroad diagram shows all the components that may make up a package:

Note that a package must have a namespace and be declared using standard Java conventions for package names; i.e., no spaces, unlike rule names which allow spaces.
In terms of the order of elements, they can appear in any order in the rule file, with the exception of the package
statement, which must be at the top of the file.
In all cases, the semicolons are optional.
Notice that any rule attribute (as described the section Rule Attributes) may also be written at package level, superseding the attribute’s default value. The modified default may still be replaced by an attribute setting within a rule.
5.1.2. Import statements in DRL

Similar to import statements in Java, imports in DRL files identify the fully qualified paths and type names for any objects that you want to use in the rules. You specify the package and data object in the format packageName.objectName
, with multiple imports on separate lines. The Drools engine automatically imports classes from the Java package with the same name as the DRL package and from the package java.lang
.
The following example is an import statement for a loan application object in a mortgage application decision service:
import org.mortgages.LoanApplication;
5.1.3. Functions in DRL

Functions in DRL files put semantic code in your rule source file instead of in Java classes. Functions are especially useful if an action (then
) part of a rule is used repeatedly and only the parameters differ for each rule. Above the rules in the DRL file, you can declare the function or import a static method from a helper class as a function, and then use the function by name in an action (then
) part of the rule.
The following examples illustrate a function that is either declared or an imported static method in a DRL file:
function String hello(String applicantName) {
return "Hello " + applicantName + "!";
}
rule "Using a function"
when
// Empty
then
System.out.println( hello( "James" ) );
end
package org.example.applicant;
public class MyFunctions {
public static String hello(String applicantName) {
return "Hello " + applicantName + "!";
}
}
import static org.example.applicant.MyFunctions.hello;
rule "Using a function"
when
// Empty
then
System.out.println( hello( "James" ) );
end
A function declared in a DRL file cannot be imported to a rule in a different package while a Java static method in a different package can be imported. |
5.1.4. Queries in DRL

Queries in DRL files search the working memory of the Drools engine for facts related to the rules in the DRL file. You add the query definitions in DRL files and then obtain the matching results in your application code. Queries search for a set of defined conditions and do not require when
or then
specifications. Query names are global to the KIE base and therefore must be unique among all other rule queries in the project. To return the results of a query, you construct a QueryResults
definition using ksession.getQueryResults("name")
, where "name"
is the query name. This returns a list of query results, which enable you to retrieve the objects that matched the query. You define the query and query results parameters above the rules in the DRL file.
The following example is a query definition in a DRL file for underage applicants in a mortgage application decision service, with the accompanying application code:
query "people under the age of 21"
$person : Person( age < 21 )
end
QueryResults results = ksession.getQueryResults( "people under the age of 21" );
System.out.println( "we have " + results.size() + " people under the age of 21" );
You can also iterate over the returned QueryResults
using a standard for
loop. Each element is a QueryResultsRow
that you can use to access each of the columns in the tuple.
QueryResults results = ksession.getQueryResults( "people under the age of 21" );
System.out.println( "we have " + results.size() + " people under the age of 21" );
System.out.println( "These people are under the age of 21:" );
for ( QueryResultsRow row : results ) {
Person person = ( Person ) row.get( "person" );
System.out.println( person.getName() + "\n" );
}
Support for positional syntax has been added for more compact code. By default the declared type order in the type declaration matches the argument position. But it possible to override these using the @position annotation. This allows patterns to be used with positional arguments, instead of the more verbose named arguments.
declare Cheese
name : String @position(1)
shop : String @position(2)
price : int @position(0)
end
The @Position annotation, in the org.drools.definition.type package, can be used to annotate original pojos on the classpath.
Currently only fields on classes can be annotated.
Inheritance of classes is supported, but not interfaces or methods.
The isContainedIn query below demonstrates the use of positional arguments in a pattern; Location(x, y;)
instead of Location( thing == x, location == y).
Queries can now call other queries, this combined with optional query arguments provides derivation query style backward chaining. Positional and named syntax is supported for arguments. It is also possible to mix both positional and named, but positional must come first, separated by a semi colon. Literal expressions can be passed as query arguments, but at this stage you cannot mix expressions with variables. Here is an example of a query that calls another query. Note that 'z' here will always be an 'out' variable. The '?' symbol means the query is pull only, once the results are returned you will not receive further results as the underlying data changes.
declare Location
thing : String
location : String
end
query isContainedIn( String x, String y )
Location(x, y;)
or
( Location(z, y;) and ?isContainedIn(x, z;) )
end
As previously mentioned you can use live "open" queries to reactively receive changes over time from the query results, as the underlying data it queries against changes. Notice the "look" rule calls the query without using '?'.
query isContainedIn( String x, String y )
Location(x, y;)
or
( Location(z, y;) and isContainedIn(x, z;) )
end
rule look when
Person( $l : likes )
isContainedIn( $l, 'office'; )
then
insertLogical( $l 'is in the office' );
end
Drools supports unification for derivation queries, in short this means that arguments are optional. It is possible to call queries from Java leaving arguments unspecified using the static field org.drools.core.runtime.rule.Variable.v - note you must use 'v' and not an alternative instance of Variable. These are referred to as 'out' arguments. Note that the query itself does not declare at compile time whether an argument is in or an out, this can be defined purely at runtime on each use. The following example will return all objects contained in the office.
results = ksession.getQueryResults( "isContainedIn", new Object[] { Variable.v, "office" } );
l = new ArrayList<List<String>>();
for ( QueryResultsRow r : results ) {
l.add( Arrays.asList( new String[] { (String) r.get( "x" ), (String) r.get( "y" ) } ) );
}
The algorithm uses stacks to handle recursion, so the method stack will not blow up.
It is also possible to use as input argument for a query both the field of a fact as in:
query contains(String $s, String $c)
$s := String( this.contains( $c ) )
end
rule PersonNamesWithA when
$p : Person()
contains( $p.name, "a"; )
then
end
and more in general any kind of valid expression like in:
query checkLength(String $s, int $l)
$s := String( length == $l )
end
rule CheckPersonNameLength when
$i : Integer()
$p : Person()
checkLength( $p.name, 1 + $i + $p.age; )
then
end
The following is not yet supported:
-
List and Map unification
-
Expression unification - pred( X, X + 1, X * Y / 7 )
5.1.5. Type declarations and metadata in DRL


Declarations in DRL files define new fact types or metadata for fact types to be used by rules in the DRL file:
-
New fact types: The default fact type in the
java.lang
package of Drools isObject
, but you can declare other types in DRL files as needed. Declaring fact types in DRL files enables you to define a new fact model directly in the Drools engine, without creating models in a lower-level language like Java. You can also declare a new type when a domain model is already built and you want to complement this model with additional entities that are used mainly during the reasoning process. -
Metadata for fact types: You can associate metadata in the format
@key(value)
with new or existing facts. Metadata can be any kind of data that is not represented by the fact attributes and is consistent among all instances of that fact type. The metadata can be queried at run time by the Drools engine and used in the reasoning process.
5.1.5.1. Type declarations without metadata in DRL
A declaration of a new fact does not require any metadata, but must include a list of attributes or fields. If a type declaration does not include identifying attributes, the Drools engine searches for an existing fact class in the classpath and raises an error if the class is missing.
The following example is a declaration of a new fact type Person
with no metadata in a DRL file:
declare Person
name : String
dateOfBirth : java.util.Date
address : Address
end
rule "Using a declared type"
when
$p : Person( name == "James" )
then // Insert Mark, who is a customer of James.
Person mark = new Person();
mark.setName( "Mark" );
insert( mark );
end
In this example, the new fact type Person
has the three attributes name
, dateOfBirth
, and address
. Each attribute has a type that can be any valid Java type, including another class that you create or a fact type that you previously declared. The dateOfBirth
attribute has the type java.util.Date
, from the Java API, and the address
attribute has the previously defined fact type Address
.
To avoid writing the fully qualified name of a class every time you declare it, you can define the full class name as part of the import
clause:
import java.util.Date
declare Person
name : String
dateOfBirth : Date
address : Address
end
When you declare a new fact type, the Drools engine generates at compile time a Java class representing the fact type. The generated Java class is a one-to-one JavaBeans mapping of the type definition.
For example, the following Java class is generated from the example Person
type declaration:
public class Person implements Serializable {
private String name;
private java.util.Date dateOfBirth;
private Address address;
// Empty constructor
public Person() {...}
// Constructor with all fields
public Person( String name, Date dateOfBirth, Address address ) {...}
// If keys are defined, constructor with keys
public Person( ...keys... ) {...}
// Getters and setters
// `equals` and `hashCode`
// `toString`
}
You can then use the generated class in your rules like any other fact, as illustrated in the previous rule example with the Person
type declaration:
rule "Using a declared type"
when
$p : Person( name == "James" )
then // Insert Mark, who is a customer of James.
Person mark = new Person();
mark.setName( "Mark" );
insert( mark );
end
5.1.5.2. Enumerative type declarations in DRL
DRL supports the declaration of enumerative types in the format declare enum <factType>
, followed by a comma-separated list of values ending with a semicolon. You can then use the enumerative list in the rules in the DRL file.
For example, the following enumerative type declaration defines days of the week for an employee scheduling rule:
declare enum DaysOfWeek
SUN("Sunday"),MON("Monday"),TUE("Tuesday"),WED("Wednesday"),THU("Thursday"),FRI("Friday"),SAT("Saturday");
fullName : String
end
rule "Using a declared Enum"
when
$emp : Employee( dayOff == DaysOfWeek.MONDAY )
then
...
end
5.1.5.3. Extended type declarations in DRL
DRL supports type declaration inheritance in the format declare <factType1> extends <factType2>
. To extend a type declared in Java by a subtype declared in DRL, you repeat the parent type in a declaration statement without any fields.
For example, the following type declarations extend a Student
type from a top-level Person
type, and a LongTermStudent
type from the Student
subtype:
import org.people.Person
declare Person end
declare Student extends Person
school : String
end
declare LongTermStudent extends Student
years : int
course : String
end
5.1.5.4. Type declarations with metadata in DRL
You can associate metadata in the format @key(value)
(the value is optional) with fact types or fact attributes. Metadata can be any kind of data that is not represented by the fact attributes and is consistent among all instances of that fact type. The metadata can be queried at run time by the Drools engine and used in the reasoning process. Any metadata that you declare before the attributes of a fact type are assigned to the fact type, while metadata that you declare after an attribute are assigned to that particular attribute.
In the following example, the two metadata attributes @author
and @dateOfCreation
are declared for the Person
fact type, and the two metadata items @key
and @maxLength
are declared for the name
attribute. The @key
metadata attribute has no required value, so the parentheses and the value are omitted.
import java.util.Date
declare Person
@author( Bob )
@dateOfCreation( 01-Feb-2009 )
name : String @key @maxLength( 30 )
dateOfBirth : Date
address : Address
end
For declarations of metadata attributes for existing types, you can identify the fully qualified class name as part of the import
clause for all declarations or as part of the individual declare
clause:
import org.drools.examples.Person
declare Person
@author( Bob )
@dateOfCreation( 01-Feb-2009 )
end
declare org.drools.examples.Person
@author( Bob )
@dateOfCreation( 01-Feb-2009 )
end
5.1.5.5. Metadata tags for fact type and attribute declarations in DRL
Although you can define custom metadata attributes in DRL declarations, the Drools engine also supports the following predefined metadata tags for declarations of fact types or fact type attributes.
The examples in this section that refer to the VoiceCall fact class in an example Telecom domain model
|
- @role
-
This tag determines whether a given fact type is handled as a regular fact or an event in the Drools engine during complex event processing.
Default parameter:
fact
Supported parameters:
fact
,event
@role( fact | event )
Example: Declare VoiceCall as event typedeclare VoiceCall @role( event ) end
- @timestamp
-
This tag is automatically assigned to every event in the Drools engine. By default, the time is provided by the session clock and assigned to the event when it is inserted into the working memory of the Drools engine. You can specify a custom time stamp attribute instead of the default time stamp added by the session clock.
Default parameter: The time added by the Drools engine session clock
Supported parameters: Session clock time or custom time stamp attribute
@timestamp( <attributeName> )
Example: Declare VoiceCall timestamp attributedeclare VoiceCall @role( event ) @timestamp( callDateTime ) end
- @duration
-
This tag determines the duration time for events in the Drools engine. Events can be interval-based events or point-in-time events. Interval-based events have a duration time and persist in the working memory of the Drools engine until their duration time has lapsed. Point-in-time events have no duration and are essentially interval-based events with a duration of zero. By default, every event in the Drools engine has a duration of zero. You can specify a custom duration attribute instead of the default.
Default parameter: Null (zero)
Supported parameters: Custom duration attribute
@duration( <attributeName> )
Example: Declare VoiceCall duration attributedeclare VoiceCall @role( event ) @timestamp( callDateTime ) @duration( callDuration ) end
- @expires
-
This tag determines the time duration before an event expires in the working memory of the Drools engine. By default, an event expires when the event can no longer match and activate any of the current rules. You can define an amount of time after which an event should expire. This tag definition also overrides the implicit expiration offset calculated from temporal constraints and sliding windows in the KIE base. This tag is available only when the Drools engine is running in stream mode.
Default parameter: Null (event expires after event can no longer match and activate rules)
Supported parameters: Custom
timeOffset
attribute in the format[#d][#h][#m][#s][[ms]]
@expires( <timeOffset> )
Example: Declare expiration offset for VoiceCall eventsdeclare VoiceCall @role( event ) @timestamp( callDateTime ) @duration( callDuration ) @expires( 1h35m ) end
- @typesafe
-
This tab determines whether a given fact type is compiled with or without type safety. By default, all type declarations are compiled with type safety enabled. You can override this behavior to type-unsafe evaluation, where all constraints are generated as MVEL constraints and executed dynamically. This is useful when dealing with collections that do not have any generics or mixed type collections.
Default parameter:
true
Supported parameters:
true
,false
@typesafe( <boolean> )
Example: Declare VoiceCall for type-unsafe evaluationdeclare VoiceCall @role( fact ) @typesafe( false ) end
- @serialVersionUID
-
This tag defines an identifying
serialVersionUID
value for a serializable class in a fact declaration. If a serializable class does not explicitly declare aserialVersionUID
, the serialization run time calculates a defaultserialVersionUID
value for that class based on various aspects of the class, as described in the Java Object Serialization Specification. However, for optimal deserialization results and for greater compatibility with serialized KIE sessions, set theserialVersionUID
as needed in the relevant class or in your DRL declarations.Default parameter: Null
Supported parameters: Custom
serialVersionUID
integer@serialVersionUID( <integer> )
Example: Declare serialVersionUID for a VoiceCall classdeclare VoiceCall @serialVersionUID( 42 ) end
- @key
-
This tag enables a fact type attribute to be used as a key identifier for the fact type. The generated class can then implement the
equals()
andhashCode()
methods to determine if two instances of the type are equal to each other. The Drools engine can also generate a constructor using all the key attributes as parameters.Default parameter: None
Supported parameters: None
<attributeDefinition> @key
Example: Declare Person type attributes as keysdeclare Person firstName : String @key lastName : String @key age : int end
For this example, the Drools engine checks the
firstName
andlastName
attributes to determine if two instances ofPerson
are equal to each other, but it does not check theage
attribute. The Drools engine also implicitly generates three constructors: one without parameters, one with the@key
fields, and one with all fields:Example constructors from the key declarationsPerson() // Empty constructor Person( String firstName, String lastName ) Person( String firstName, String lastName, int age )
You can then create instances of the type based on the key constructors, as shown in the following example:
Example instance using the key constructorPerson person = new Person( "John", "Doe" );
- @position
-
This tag determines the position of a declared fact type attribute or field in a positional argument, overriding the default declared order of attributes. You can use this tag to modify positional constraints in patterns while maintaining a consistent format in your type declarations and positional arguments. You can use this tag only for fields in classes on the classpath. If some fields in a single class use this tag and some do not, the attributes without this tag are positioned last, in the declared order. Inheritance of classes is supported, but not interfaces of methods.
Default parameter: None
Supported parameters: Any integer
<attributeDefinition> @position ( <integer> )
Example: Declare a fact type and override declared orderdeclare Person firstName : String @position( 1 ) lastName : String @position( 0 ) age : int @position( 2 ) occupation: String end
In this example, the attributes are prioritized in positional arguments in the following order:
-
lastName
-
firstName
-
age
-
occupation
In positional arguments, you do not need to specify the field name because the position maps to a known named field. For example, the argument
Person( lastName == "Doe" )
is the same asPerson( "Doe"; )
, where thelastName
field has the highest position annotation in the DRL declaration. The semicolon;
indicates that everything before it is a positional argument. You can mix positional and named arguments on a pattern by using the semicolon to separate them. Any variables in a positional argument that have not yet been bound are bound to the field that maps to that position.The following example patterns illustrate different ways of constructing positional and named arguments. The patterns have two constraints and a binding, and the semicolon differentiates the positional section from the named argument section. Variables and literals and expressions using only literals are supported in positional arguments, but not variables alone.
Example patterns with positional and named argumentsPerson( "Doe", "John", $a; ) Person( "Doe", "John"; $a : age ) Person( "Doe"; firstName == "John", $a : age ) Person( lastName == "Doe"; firstName == "John", $a : age )
Positional arguments can be classified as input arguments or output arguments. Input arguments contain a previously declared binding and constrain against that binding using unification. Output arguments generate the declaration and bind it to the field represented by the positional argument when the binding does not yet exist.
In extended type declarations, use caution when defining
@position
annotations because the attribute positions are inherited in subtypes. This inheritance can result in a mixed attribute order that can be confusing in some cases. Two fields can have the same@position
value and consecutive values do not need to be declared. If a position is repeated, the conflict is solved using inheritance, where position values in the parent type have precedence, and then using the declaration order from the first to last declaration.For example, the following extended type declarations result in mixed positional priorities:
Example extended fact type with mixed position annotationsdeclare Person firstName : String @position( 1 ) lastName : String @position( 0 ) age : int @position( 2 ) occupation: String end declare Student extends Person degree : String @position( 1 ) school : String @position( 0 ) graduationDate : Date end
In this example, the attributes are prioritized in positional arguments in the following order:
-
lastName
(position 0 in the parent type) -
school
(position 0 in the subtype) -
firstName
(position 1 in the parent type) -
degree
(position 1 in the subtype) -
age
(position 2 in the parent type) -
occupation
(first field with no position annotation) -
graduationDate
(second field with no position annotation)
-
5.1.5.6. Property-change settings and listeners for fact types
By default, the Drools engine does not re-evaluate all fact patterns for fact types each time a rule is triggered, but instead reacts only to modified properties that are constrained or bound inside a given pattern. For example, if a rule calls modify()
as part of the rule actions but the action does not generate new data in the KIE base, the Drools engine does not automatically re-evaluate all fact patterns because no data was modified. This property reactivity behavior prevents unwanted recursions in the KIE base and results in more efficient rule evaluation. This behavior also means that you do not always need to use the no-loop
rule attribute to avoid infinite recursion.
You can modify or disable this property reactivity behavior with the following KnowledgeBuilderConfiguration
options, and then use a property-change setting in your Java class or DRL files to fine-tune property reactivity as needed:
-
ALWAYS
: (Default) All types are property reactive, but you can disable property reactivity for a specific type by using the@classReactive
property-change setting. -
ALLOWED
: No types are property reactive, but you can enable property reactivity for a specific type by using the@propertyReactive
property-change setting. -
DISABLED
: No types are property reactive. All property-change listeners are ignored.
KnowledgeBuilderConfiguration config = KnowledgeBuilderFactory.newKnowledgeBuilderConfiguration();
config.setOption(PropertySpecificOption.ALLOWED);
KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder(config);
Alternatively, you can update the drools.propertySpecific
system property in the standalone.xml
file of your Drools distribution:
<system-properties>
...
<property name="drools.propertySpecific" value="ALLOWED"/>
...
</system-properties>
The Drools engine supports the following property-change settings and listeners for fact classes or declared DRL fact types:
- @classReactive
-
If property reactivity is set to
ALWAYS
in the Drools engine (all types are property reactive), this tag disables the default property reactivity behavior for a specific Java class or a declared DRL fact type. You can use this tag if you want the Drools engine to re-evaluate all fact patterns for the specified fact type each time the rule is triggered, instead of reacting only to modified properties that are constrained or bound inside a given pattern.Example: Disable default property reactivity in a DRL type declarationdeclare Person @classReactive firstName : String lastName : String end
Example: Disable default property reactivity in a Java class@classReactive public static class Person { private String firstName; private String lastName; }
- @propertyReactive
-
If property reactivity is set to
ALLOWED
in the Drools engine (no types are property reactive unless specified), this tag enables property reactivity for a specific Java class or a declared DRL fact type. You can use this tag if you want the Drools engine to react only to modified properties that are constrained or bound inside a given pattern for the specified fact type, instead of re-evaluating all fact patterns for the fact each time the rule is triggered.Example: Enable property reactivity in a DRL type declaration (when reactivity is disabled globally)declare Person @propertyReactive firstName : String lastName : String end
Example: Enable property reactivity in a Java class (when reactivity is disabled globally)@propertyReactive public static class Person { private String firstName; private String lastName; }
- @watch
-
This tag enables property reactivity for additional properties that you specify in-line in fact patterns in DRL rules. This tag is supported only if property reactivity is set to
ALWAYS
in the Drools engine, or if property reactivity is set toALLOWED
and the relevant fact type uses the@propertyReactive
tag. You can use this tag in DRL rules to add or exclude specific properties in fact property reactivity logic.Default parameter: None
Supported parameters: Property name,
*
(all),!
(not),!*
(no properties)<factPattern> @watch ( <property> )
Example: Enable or disable property reactivity in fact patterns// Listens for changes in both `firstName` (inferred) and `lastName`: Person(firstName == $expectedFirstName) @watch( lastName ) // Listens for changes in all properties of the `Person` fact: Person(firstName == $expectedFirstName) @watch( * ) // Listens for changes in `lastName` and explicitly excludes changes in `firstName`: Person(firstName == $expectedFirstName) @watch( lastName, !firstName ) // Listens for changes in all properties of the `Person` fact except `age`: Person(firstName == $expectedFirstName) @watch( *, !age ) // Excludes changes in all properties of the `Person` fact (equivalent to using `@classReactivity` tag): Person(firstName == $expectedFirstName) @watch( !* )
The Drools engine generates a compilation error if you use the
@watch
tag for properties in a fact type that uses the@classReactive
tag (disables property reactivity) or when property reactivity is set toALLOWED
in the Drools engine and the relevant fact type does not use the@propertyReactive
tag. Compilation errors also arise if you duplicate properties in listener annotations, such as@watch( firstName, ! firstName )
. - @propertyChangeSupport
-
For facts that implement support for property changes as defined in the JavaBeans Specification, this tag enables the Drools engine to monitor changes in the fact properties.
Example: Declare property change support in JavaBeans objectdeclare Person @propertyChangeSupport end
5.1.5.7. Access to DRL declared types in application code
Declared types in DRL are typically used within the DRL files while Java models are typically used when the model is shared between rules and applications. Because declared types are generated at KIE base compile time, an application cannot access them until application run time. In some cases, an application needs to access and handle facts directly from the declared types, especially when the application wraps the Drools engine and provides higher-level, domain-specific user interfaces for rules management.
To handle declared types directly from the application code, you can use the org.drools.definition.type.FactType
API in Drools. Through this API, you can instantiate, read, and write fields in the declared fact types.
The following example code modifies a Person
fact type directly from an application:
import java.util.Date;
import org.kie.api.definition.type.FactType;
import org.kie.api.KieBase;
import org.kie.api.runtime.KieSession;
...
// Get a reference to a KIE base with the declared type:
KieBase kbase = ...
// Get the declared fact type:
FactType personType = kbase.getFactType("org.drools.examples", "Person");
// Create instances:
Object bob = personType.newInstance();
// Set attribute values:
personType.set(bob, "name", "Bob" );
personType.set(bob, "dateOfBirth", new Date());
personType.set(bob, "address", new Address("King's Road","London","404"));
// Insert the fact into a KIE session:
KieSession ksession = ...
ksession.insert(bob);
ksession.fireAllRules();
// Read attributes:
String name = (String) personType.get(bob, "name");
Date date = (Date) personType.get(bob, "dateOfBirth");
The API also includes other helpful methods, such as setting all the attributes at once, reading values from a Map
collection, or reading all attributes at once into a Map
collection.
Although the API behavior is similar to Java reflection, the API does not use reflection and relies on more performant accessors that are implemented with generated bytecode.
5.1.6. Global variables in DRL

Global variables in DRL files typically provide data or services for the rules, such as application services used in rule consequences, and return data from rules, such as logs or values added in rule consequences. You set the global value in the working memory of the Drools engine through a KIE session configuration or REST operation, declare the global variable above the rules in the DRL file, and then use it in an action (then
) part of the rule. For multiple global variables, use separate lines in the DRL file.
The following example illustrates a global variable list configuration for the Drools engine and the corresponding global variable definition in the DRL file:
List<String> list = new ArrayList<>();
KieSession kieSession = kiebase.newKieSession();
kieSession.setGlobal( "myGlobalList", list );
global java.util.List myGlobalList;
rule "Using a global"
when
// Empty
then
myGlobalList.add( "My global list" );
end
Do not use global variables to establish conditions in rules unless a global variable has a constant immutable value. Global variables are not inserted into the working memory of the Drools engine, so the Drools engine cannot track value changes of variables. Do not use global variables to share data between rules. Rules always reason and react to the working memory state, so if you want to pass data from rule to rule, assert the data as facts into the working memory of the Drools engine. |
A use case for a global variable might be an instance of an email service. In your integration code that is calling the Drools engine, you obtain your emailService
object and then set it in the working memory of the Drools engine. In the DRL file, you declare that you have a global of type emailService
and give it the name "email"
, and then in your rule consequences, you can use actions such as email.sendSMS(number, message)
.
If you declare global variables with the same identifier in multiple packages, then you must set all the packages with the same type so that they all reference the same global value.
5.1.7. Rule attributes in DRL

Rule attributes are additional specifications that you can add to business rules to modify rule behavior. In DRL files, you typically define rule attributes above the rule conditions and actions, with multiple attributes on separate lines, in the following format:
rule "rule_name"
// Attribute
// Attribute
when
// Conditions
then
// Actions
end
The following table lists the names and supported values of the attributes that you can assign to rules:
Attribute | Value | ||
---|---|---|---|
|
An integer defining the priority of the rule. Rules with a higher salience value are given higher priority when ordered in the activation queue. Example: |
||
|
A Boolean value. When the option is selected, the rule is enabled. When the option is not selected, the rule is disabled. Example: |
||
|
A string containing a date and time definition. The rule can be activated only if the current date and time is after a Example: |
||
|
A string containing a date and time definition. The rule cannot be activated if the current date and time is after the Example: |
||
|
A Boolean value. When the option is selected, the rule cannot be reactivated (looped) if a consequence of the rule re-triggers a previously met condition. When the condition is not selected, the rule can be looped in these circumstances. Example: |
||
|
A string identifying an agenda group to which you want to assign the rule. Agenda groups allow you to partition the agenda to provide more execution control over groups of rules. Only rules in an agenda group that has acquired a focus are able to be activated. Example: |
||
|
A string identifying an activation (or XOR) group to which you want to assign the rule. In activation groups, only one rule can be activated. The first rule to fire will cancel all pending activations of all rules in the activation group. Example: |
||
|
A long integer value defining the duration of time in milliseconds after which the rule can be activated, if the rule conditions are still met. Example: |
||
|
A string identifying either Example: |
||
|
A Quartz calendar definition for scheduling the rule. Example: |
||
|
A Boolean value, applicable only to rules within agenda groups. When the option is selected, the next time the rule is activated, a focus is automatically given to the agenda group to which the rule is assigned. Example: |
||
|
A Boolean value, applicable only to rules within rule flow groups or agenda groups. When the option is selected, the next time the ruleflow group for the rule becomes active or the agenda group for the rule receives a focus, the rule cannot be activated again until the ruleflow group is no longer active or the agenda group loses the focus. This is a stronger version of the Example: |
||
|
A string identifying a rule flow group. In rule flow groups, rules can fire only when the group is activated by the associated rule flow. Example: |
||
|
A string identifying either Example:
|
5.1.7.1. Timer and calendar rule attributes in DRL
Timers and calendars are DRL rule attributes that enable you to apply scheduling and timing constraints to your DRL rules. These attributes require additional configurations depending on the use case.
The timer
attribute in DRL rules is a string identifying either int
(interval) or cron
timer definitions for scheduling a rule and supports the following formats:
timer ( int: <initial delay> <repeat interval> )
timer ( cron: <cron expression> )
// Run after a 30-second delay
timer ( int: 30s )
// Run every 5 minutes after a 30-second delay each time
timer ( int: 30s 5m )
// Run every 15 minutes
timer ( cron:* 0/15 * * * ? )
Interval timers follow the semantics of java.util.Timer
objects, with an initial delay and an optional repeat interval. Cron timers follow standard Unix cron expressions.
The following example DRL rule uses a cron timer to send an SMS text message every 15 minutes:
rule "Send SMS message every 15 minutes"
timer ( cron:* 0/15 * * * ? )
when
$a : Alarm( on == true )
then
channels[ "sms" ].insert( new Sms( $a.mobileNumber, "The alarm is still on." );
end
Generally, a rule that is controlled by a timer becomes active when the rule is triggered and the rule consequence is executed repeatedly, according to the timer settings. The execution stops when the rule condition no longer matches incoming facts. However, the way the Drools engine handles rules with timers depends on whether the Drools engine is in active mode or in passive mode.
By default, the Drools engine runs in passive mode and evaluates rules, according to the defined timer settings, when a user or an application explicitly calls fireAllRules()
. Conversely, if a user or application calls fireUntilHalt()
, the Drools engine starts in active mode and evaluates rules continually until the user or application explicitly calls halt()
.
When the Drools engine is in active mode, rule consequences are executed even after control returns from a call to fireUntilHalt()
and the Drools engine remains reactive to any changes made to the working memory. For example, removing a fact that was involved in triggering the timer rule execution causes the repeated execution to terminate, and inserting a fact so that some rule matches causes that rule to be executed. However, the Drools engine is not continually active, but is active only after a rule is executed. Therefore, the Drools engine does not react to asynchronous fact insertions until the next execution of a timer-controlled rule. Disposing a KIE session terminates all timer activity.
When the Drools engine is in passive mode, rule consequences of timed rules are evaluated only when fireAllRules()
is invoked again. However, you can change the default timer-execution behavior in passive mode by configuring the KIE session with a TimedRuleExecutionOption
option, as shown in the following example:
KieSessionConfiguration ksconf = KieServices.Factory.get().newKieSessionConfiguration();
ksconf.setOption( TimedRuleExecutionOption.YES );
KSession ksession = kbase.newKieSession(ksconf, null);
You can additionally set a FILTERED
specification on the TimedRuleExecutionOption
option that enables you to define a
callback to filter those rules, as shown in the following example:
KieSessionConfiguration ksconf = KieServices.Factory.get().newKieSessionConfiguration();
conf.setOption( new TimedRuleExecutionOption.FILTERED(new TimedRuleExecutionFilter() {
public boolean accept(Rule[] rules) {
return rules[0].getName().equals("MyRule");
}
}) );
For interval timers, you can also use an expression timer with expr
instead of int
to define both the delay and interval as an expression instead of a fixed value.
The following example DRL file declares a fact type with a delay and period that are then used in the subsequent rule with an expression timer:
declare Bean
delay : String = "30s"
period : long = 60000
end
rule "Expression timer"
timer ( expr: $d, $p )
when
Bean( $d : delay, $p : period )
then
// Actions
end
The expressions, such as $d
and $p
in this example, can use any variable defined in the pattern-matching part of the rule. The variable can be any String
value that can be parsed into a time duration or any numeric value that is internally converted in a long
value for a duration in milliseconds.
Both interval and expression timers can use the following optional parameters:
-
start
andend
: ADate
or aString
representing aDate
or along
value. The value can also be aNumber
that is transformed into a JavaDate
in the formatnew Date( ((Number) n).longValue() )
. -
repeat-limit
: An integer that defines the maximum number of repetitions allowed by the timer. If both theend
and therepeat-limit
parameters are set, the timer stops when the first of the two is reached.
start
, end
, and repeat-limit
parameterstimer (int: 30s 1h; start=3-JAN-2020, end=4-JAN-2020, repeat-limit=50)
In this example, the rule is scheduled for every hour, after a delay of 30 seconds each hour, beginning on 3 January 2020 and ending either on 4 January 2020 or when the cycle repeats 50 times.
If the system is paused (for example, the session is serialized and then later deserialized), the rule is scheduled only one time to recover from missing activations regardless of how many activations were missed during the pause, and then the rule is subsequently scheduled again to continue in sync with the timer setting.
The calendar
attribute in DRL rules is a Quartz calendar definition for scheduling a rule and supports the following format:
calendars "<definition or registered name>"
// Exclude non-business hours
calendars "* * 0-7,18-23 ? * *"
// Weekdays only, as registered in the KIE session
calendars "weekday"
You can adapt a Quartz calendar based on the Quartz calendar API and then register the calendar in the KIE session, as shown in the following example:
Calendar weekDayCal = QuartzHelper.quartzCalendarAdapter(org.quartz.Calendar quartzCal)
ksession.getCalendars().set( "weekday", weekDayCal );
You can use calendars with standard rules and with rules that use timers. The calendar attribute can contain one or more comma-separated calendar names written as String
literals.
The following example rules use both calendars and timers to schedule the rules:
rule "Weekdays are high priority"
calendars "weekday"
timer ( int:0 1h )
when
Alarm()
then
send( "priority high - we have an alarm" );
end
rule "Weekends are low priority"
calendars "weekend"
timer ( int:0 4h )
when
Alarm()
then
send( "priority low - we have an alarm" );
end
5.1.8. Rule conditions in DRL (WHEN)


The when
part of a DRL rule (also known as the Left Hand Side (LHS) of the rule) contains the conditions that must be met to execute an action. Conditions consist of a series of stated patterns and constraints, with optional bindings and supported rule condition elements (keywords), based on the available data objects in the package. For example, if a bank requires loan applicants to have over 21 years of age, then the when
condition of an "Underage"
rule would be Applicant( age < 21 )
.
DRL uses when instead of if because if is typically part of a procedural execution flow during which a condition is checked at a specific point in time. In contrast, when indicates that the condition evaluation is not limited to a specific evaluation sequence or point in time, but instead occurs continually at any time. Whenever the condition is met, the actions are executed.
|
If the when
section is empty, then the conditions are considered to be true and the actions in the then
section are executed the first time a fireAllRules()
call is made in the Drools engine. This is useful if you want to use rules to set up the Drools engine state.
The following example rule uses empty conditions to insert a fact every time the rule is executed:
rule "Always insert applicant"
when
// Empty
then // Actions to be executed once
insert( new Applicant() );
end
// The rule is internally rewritten in the following way:
rule "Always insert applicant"
when
eval( true )
then
insert( new Applicant() );
end
If rule conditions use multiple patterns with no defined keyword conjunctions (such as and
, or
, or not
), the default conjunction is and
:
rule "Underage"
when
application : LoanApplication()
Applicant( age < 21 )
then
// Actions
end
// The rule is internally rewritten in the following way:
rule "Underage"
when
application : LoanApplication()
and Applicant( age < 21 )
then
// Actions
end
5.1.8.1. Patterns and constraints
A pattern in a DRL rule condition is the segment to be matched by the Drools engine. A pattern can potentially match each fact that is inserted into the working memory of the Drools engine. A pattern can also contain constraints to further define the facts to be matched.
The railroad diagram below shows the syntax for this:

In the simplest form, with no constraints, a pattern matches a fact of the given type. In the following example, the type is Person
, so the pattern will match against all Person
objects in the working memory of the Drools engine:
Person()
The type does not need to be the actual class of some fact object. Patterns can refer to superclasses or even interfaces, potentially matching facts from many different classes. For example, the following pattern matches all objects in the working memory of the Drools engine:
Object() // Matches all objects in the working memory
The parentheses of a pattern enclose the constraints, such as the following constraint on the person’s age:
Person( age == 50 )
A constraint is an expression that returns true
or false
. Pattern constraints in DRL are essentially Java expressions with some enhancements, such as property access, and some differences, such as equals()
and !equals()
semantics for ==
and !=
(instead of the usual same
and not same
semantics).
Any JavaBeans property can be accessed directly from pattern constraints. A bean property is exposed internally using a standard JavaBeans getter that takes no arguments and returns something. For example, the age
property is written as age
in DRL instead of the getter getAge()
:
Person( age == 50 )
// This is the same as the following getter format:
Person( getAge() == 50 )
Drools uses the standard JDK Introspector
class to achieve this mapping, so it follows the standard JavaBeans specification. For optimal Drools engine performance, use the property access format, such as age
, instead of using getters explicitly, such as getAge()
.
Do not use property accessors to change the state of the object in a way that might affect the rules because the Drools engine caches the results of the match between invocations for higher efficiency. For example, do not use property accessors in the following ways:
Instead of following the second example, insert a fact that wraps the current date in the working memory and update that fact between |
However, if the getter of a property cannot be found, the compiler uses the property name as a fallback method name, without arguments:
Person( age == 50 )
// If `Person.getAge()` does not exist, the compiler uses the following syntax:
Person( age() == 50 )
You can also nest access properties in patterns, as shown in the following example. Nested properties are indexed by the Drools engine.
Person( address.houseNumber == 50 )
// This is the same as the following format:
Person( getAddress().getHouseNumber() == 50 )
In stateful KIE sessions, use nested accessors carefully because the working memory of the Drools engine is not aware of any of the nested values and does not detect when they change. Either consider the nested values immutable while any of their parent references are inserted into the working memory, or, if you want to modify a nested value, mark all of the outer facts as updated. In the previous example, when the houseNumber property changes, any Person with that Address must be marked as updated.
|
You can use any Java expression that returns a boolean
value as a constraint inside the parentheses of a pattern. Java expressions can be mixed with other expression enhancements, such as property access:
Person( age == 50 )
You can change the evaluation priority by using parentheses, as in any logical or mathematical expression:
Person( age > 100 && ( age % 10 == 0 ) )
You can also reuse Java methods in constraints, as shown in the following example:
Person( Math.round( weight / ( height * height ) ) < 25.0 )
Do not use constraints to change the state of the object in a way that might affect the rules because the Drools engine caches the results of the match between invocations for higher efficiency. Any method that is executed on a fact in the rule conditions must be a read-only method. Also, the state of a fact should not change between rule invocations unless those facts are marked as updated in the working memory on every change. For example, do not use a pattern constraint in the following ways:
|
Standard Java operator precedence applies to constraint operators in DRL, and DRL operators follow standard Java semantics except for the ==
and !=
operators.
The ==
operator uses null-safe equals()
semantics instead of the usual same
semantics. For example, the pattern Person( firstName == "John" )
is similar to java.util.Objects.equals(person.getFirstName(), "John")
, and because "John"
is not null, the pattern is also similar to "John".equals(person.getFirstName())
.
The !=
operator uses null-safe !equals()
semantics instead of the usual not same
semantics. For example, the pattern Person( firstName != "John" )
is similar to !java.util.Objects.equals(person.getFirstName(), "John")
.
If the field and the value of a constraint are of different types, the Drools engine uses type coercion to resolve the conflict and reduce compilation errors. For instance, if "ten"
is provided as a string in a numeric evaluator, a compilation error occurs, whereas "10"
is coerced to a numeric 10. In coercion, the field type always takes precedence over the value type:
Person( age == "10" ) // "10" is coerced to 10
For groups of constraints, you can use a delimiting comma ,
to use implicit and
connective semantics:
// Person is at least 50 years old and weighs at least 80 kilograms:
Person( age > 50, weight > 80 )
// Person is at least 50 years old, weighs at least 80 kilograms, and is taller than 2 meters:
Person( age > 50, weight > 80, height > 2 )
Although the && and , operators have the same semantics, they are resolved with different priorities. The && operator precedes the || operator, and both the && and || operators together precede the , operator. Use the comma operator at the top-level constraint for optimal Drools engine performance and human readability.
|
You cannot embed a comma operator in a composite constraint expression, such as in parentheses:
// Do not use the following format:
Person( ( age > 50, weight > 80 ) || height > 2 )
// Use the following format instead:
Person( ( age > 50 && weight > 80 ) || height > 2 )
5.1.8.2. Bound variables in patterns and constraints
You can bind variables to patterns and constraints to refer to matched objects in other portions of a rule. Bound variables can help you define rules more efficiently or more consistently with how you annotate facts in your data model. To differentiate more easily between variables and fields in a rule, use the standard format $variable
for variables, especially in complex rules. This convention is helpful but not required in DRL.
For example, the following DRL rule uses the variable $p
for a pattern with the Person
fact:
rule "simple rule"
when
$p : Person()
then
System.out.println( "Person " + $p );
end
Similarly, you can also bind variables to properties in pattern constraints, as shown in the following example:
// Two persons of the same age:
Person( $firstAge : age ) // Binding
Person( age == $firstAge ) // Constraint expression
Constraint binding considers only the first atomic expression that follows it. In the following example the pattern only binds the age of the person to the variable
For clearer and more efficient rule definitions, separate constraint bindings and constraint expressions. Although mixed bindings and expressions are supported, which can complicate patterns and affect evaluation efficiency.
In the preceding example, if you want to bind to the variable
|
The Drools engine does not support bindings to the same declaration, but does support unification of arguments across several properties. While positional arguments are always processed with unification, the unification symbol :=
exists for named arguments.
The following example patterns unify the age
property across two Person
facts:
Person( $age := age )
Person( $age := age )
Unification declares a binding for the first occurrence and constrains to the same value of the bound field for sequence occurrences.
5.1.8.3. Nested constraints and inline casts
In some cases, you might need to access multiple properties of a nested object, as shown in the following example:
Person( name == "mark", address.city == "london", address.country == "uk" )
You can group these property accessors to nested objects with the syntax .( <constraints> )
for more readable rules, as shown in the following example:
Person( name == "mark", address.( city == "london", country == "uk") )
The period prefix . differentiates the nested object constraints from a method call.
|
When you work with nested objects in patterns, you can use the syntax <type>#<subtype>
to cast to a subtype and make the getters from the parent type available to the subtype. You can use either the object name or fully qualified class name, and you can cast to one or multiple subtypes, as shown in the following examples:
// Inline casting with subtype name:
Person( name == "mark", address#LongAddress.country == "uk" )
// Inline casting with fully qualified class name:
Person( name == "mark", address#org.domain.LongAddress.country == "uk" )
// Multiple inline casts:
Person( name == "mark", address#LongAddress.country#DetailedCountry.population > 10000000 )
These example patterns cast Address
to LongAddress
, and additionally to DetailedCountry
in the last example, making the parent getters available to the subtypes in each case.
You can use the instanceof
operator to infer the results of the specified type in subsequent uses of that field with the pattern, as shown in the following example:
Person( name == "mark", address instanceof LongAddress, address.country == "uk" )
If an inline cast is not possible (for example, if instanceof
returns false
), the evaluation is considered false
.
5.1.8.4. Date literal in constraints
By default, the Drools engine supports the date format dd-mmm-yyyy
. You can customize the date format, including a time format mask if needed, by providing an alternative format mask with the system property drools.dateformat="dd-mmm-yyyy hh:mm"
. You can also customize the date format by changing the language locale with the drools.defaultlanguage
and drools.defaultcountry
system properties (for example, the locale of Thailand is set as drools.defaultlanguage=th
and drools.defaultcountry=TH
).
Person( bornBefore < "27-Oct-2009" )
5.1.8.5. Auto-boxing and primitive types
Drools attempts to preserve numbers in their primitive or object wrapper form, so a variable bound to an int primitive when used in a code block or expression will no longer need manual unboxing; unlike early Drools versions where all primitives were autoboxed, requiring manual unboxing. A variable bound to an object wrapper will remain as an object; the existing JDK 1.5 and JDK 5 rules to handle auto-boxing and unboxing apply in this case. When evaluating field constraints, the system attempts to coerce one of the values into a comparable format; so a primitive is comparable to an object wrapper.
5.1.8.6. Supported operators in DRL pattern constraints
DRL supports standard Java semantics for operators in pattern constraints, with some exceptions and with some additional operators that are unique in DRL. The following list summarizes the operators that are handled differently in DRL constraints than in standard Java semantics or that are unique in DRL constraints.
.()
,#
-
Use the
.()
operator to group property accessors to nested objects, and use the#
operator to cast to a subtype in nested objects. Casting to a subtype makes the getters from the parent type available to the subtype. You can use either the object name or fully qualified class name, and you can cast to one or multiple subtypes.Example patterns with nested objects// Ungrouped property accessors: Person( name == "mark", address.city == "london", address.country == "uk" ) // Grouped property accessors: Person( name == "mark", address.( city == "london", country == "uk") )
The period prefix .
differentiates the nested object constraints from a method call.Example patterns with inline casting to a subtype// Inline casting with subtype name: Person( name == "mark", address#LongAddress.country == "uk" ) // Inline casting with fully qualified class name: Person( name == "mark", address#org.domain.LongAddress.country == "uk" ) // Multiple inline casts: Person( name == "mark", address#LongAddress.country#DetailedCountry.population > 10000000 )
!.
-
Use this operator to dereference a property in a null-safe way. The value to the left of the
!.
operator must be not null (interpreted as!= null
) in order to give a positive result for pattern matching.Example constraint with null-safe dereferencingPerson( $streetName : address!.street ) // This is internally rewritten in the following way: Person( address != null, $streetName : address.street )
[]
-
Use this operator to access a
List
value by index or aMap
value by key.Example constraints withList
andMap
access// The following format is the same as `childList(0).getAge() == 18`: Person(childList[0].age == 18) // The following format is the same as `credentialMap.get("jdoe").isValid()`: Person(credentialMap["jdoe"].valid)
<
,<=
,>
,>=
-
Use these operators on properties with natural ordering. For example, for
Date
fields, the<
operator means before, and forString
fields, the operator means alphabetically before. These properties apply only to comparable properties.Example constraints withbefore
operatorPerson( birthDate < $otherBirthDate ) Person( firstName < $otherFirstName )
==
,!=
-
Use these operators as
equals()
and!equals()
methods in constraints, instead of the usualsame
andnot same
semantics.Example constraint with null-safe equalityPerson( firstName == "John" ) // This is similar to the following formats: java.util.Objects.equals(person.getFirstName(), "John") "John".equals(person.getFirstName())
Example constraint with null-safe not equalityPerson( firstName != "John" ) // This is similar to the following format: !java.util.Objects.equals(person.getFirstName(), "John")
&&
,||
-
Use these operators to create an abbreviated combined relation condition that adds more than one restriction on a field. You can group constraints with parentheses
()
to create a recursive syntax pattern.Example constraints with abbreviated combined relation// Simple abbreviated combined relation condition using a single `&&`: Person(age > 30 && < 40) // Complex abbreviated combined relation using groupings: Person(age ((> 30 && < 40) || (> 20 && < 25))) // Mixing abbreviated combined relation with constraint connectives: Person(age > 30 && < 40 || location == "london")
Figure 71. Abbreviated combined relation conditionFigure 72. Abbreviated combined relation condition withparentheses matches
,not matches
-
Use these operators to indicate that a field matches or does not match a specified Java regular expression. Typically, the regular expression is a
String
literal, but variables that resolve to a valid regular expression are also supported. These operators apply only toString
properties. If you usematches
against anull
value, the resulting evaluation is alwaysfalse
. If you usenot matches
against anull
value, the resulting evaluation is alwaystrue
. As in Java, regular expressions that you write asString
literals must use a double backslash\\
to escape.Example constraint to match or not match a regular expressionPerson( country matches "(USA)?\\S*UK" ) Person( country not matches "(USA)?\\S*UK" )
contains
,not contains
-
Use these operators to verify whether a field that is an
Array
or aCollection
contains or does not contain a specified value. These operators apply toArray
orCollection
properties, but you can also use these operators in place ofString.contains()
and!String.contains()
constraints checks.Example constraints withcontains
andnot contains
for a Collection// Collection with a specified field: FamilyTree( countries contains "UK" ) FamilyTree( countries not contains "UK" ) // Collection with a variable: FamilyTree( countries contains $var ) FamilyTree( countries not contains $var )
Example constraints withcontains
andnot contains
for a String literal// Sting literal with a specified field: Person( fullName contains "Jr" ) Person( fullName not contains "Jr" ) // String literal with a variable: Person( fullName contains $var ) Person( fullName not contains $var )
For backward compatibility, the excludes
operator is a supported synonym fornot contains
. memberOf
,not memberOf
-
Use these operators to verify whether a field is a member of or is not a member of an
Array
or aCollection
that is defined as a variable. TheArray
orCollection
must be a variable.Example constraints withmemberOf
andnot memberOf
with a CollectionFamilyTree( person memberOf $europeanDescendants ) FamilyTree( person not memberOf $europeanDescendants )
soundslike
-
Use this operator to verify whether a word has almost the same sound, using English pronunciation, as the given value (similar to the
matches
operator). This operator uses the Soundex algorithm.Example constraint withsoundslike
// Match firstName "Jon" or "John": Person( firstName soundslike "John" )
str
-
Use this operator to verify whether a field that is a
String
starts with or ends with a specified value. You can also use this operator to verify the length of theString
.Example constraints withstr
// Verify what the String starts with: Message( routingValue str[startsWith] "R1" ) // Verify what the String ends with: Message( routingValue str[endsWith] "R2" ) // Verify the length of the String: Message( routingValue str[length] 17 )
in
,notin
-
Use these operators to specify more than one possible value to match in a constraint (compound value restriction). This functionality of compound value restriction is supported only in the
in
andnot in
operators. The second operand of these operators must be a comma-separated list of values enclosed in parentheses. You can provide values as variables, literals, return values, or qualified identifiers. These operators are internally rewritten as a list of multiple restrictions using the operators==
or!=
.Figure 73. compoundValueRestrictionExample constraints within
andnotin
Person( $color : favoriteColor ) Color( type in ( "red", "blue", $color ) ) Person( $color : favoriteColor ) Color( type notin ( "red", "blue", $color ) )
5.1.8.7. Operator precedence in DRL pattern constraints
DRL supports standard Java operator precedence for applicable constraint operators, with some exceptions and with some additional operators that are unique in DRL. The following table lists DRL operator precedence where applicable, from highest to lowest precedence:
Operator type | Operators | Notes |
---|---|---|
Nested or null-safe property access |
|
Not standard Java semantics |
|
|
Not standard Java semantics |
Constraint binding |
|
Not standard Java semantics |
Multiplicative |
|
|
Additive |
|
|
Shift |
|
|
Relational |
|
|
Equality |
|
Uses |
Non-short-circuiting |
|
|
Non-short-circuiting exclusive |
|
|
Non-short-circuiting inclusive |
|
|
Logical |
|
|
Logical |
|
|
Ternary |
|
|
Comma-separated |
|
Not standard Java semantics |
5.1.8.8. Supported rule condition elements in DRL (keywords)
DRL supports the following rule condition elements (keywords) that you can use with the patterns that you define in DRL rule conditions:
and
-
Use this to group conditional components into a logical conjunction. Infix and prefix
and
are supported. You can group patterns explicitly with parentheses()
. By default, all listed patterns are combined withand
when no conjunction is specified.Figure 74. infixAndFigure 75. prefixAndExample patterns withand
//Infix `and`: Color( colorType : type ) and Person( favoriteColor == colorType ) //Infix `and` with grouping: (Color( colorType : type ) and (Person( favoriteColor == colorType ) or Person( favoriteColor == colorType )) // Prefix `and`: (and Color( colorType : type ) Person( favoriteColor == colorType )) // Default implicit `and`: Color( colorType : type ) Person( favoriteColor == colorType )
Do not use a leading declaration binding with the
and
keyword (as you can withor
, for example). A declaration can only reference a single fact at a time, and if you use a declaration binding withand
, then whenand
is satisfied, it matches both facts and results in an error.Example misuse ofand
// Causes compile error: $person : (Person( name == "Romeo" ) and Person( name == "Juliet"))
or
-
Use this to group conditional components into a logical disjunction. Infix and prefix
or
are supported. You can group patterns explicitly with parentheses()
. You can also use pattern binding withor
, but each pattern must be bound separately.Figure 76. infixOrFigure 77. prefixOrExample patterns withor
//Infix `or`: Color( colorType : type ) or Person( favoriteColor == colorType ) //Infix `or` with grouping: (Color( colorType : type ) or (Person( favoriteColor == colorType ) and Person( favoriteColor == colorType )) // Prefix `or`: (or Color( colorType : type ) Person( favoriteColor == colorType ))
Example patterns withor
and pattern bindingpensioner : (Person( sex == "f", age > 60 ) or Person( sex == "m", age > 65 )) (or pensioner : Person( sex == "f", age > 60 ) pensioner : Person( sex == "m", age > 65 ))
The Drools engine does not directly interpret the
or
element but uses logical transformations to rewrite a rule withor
as a number of sub-rules. This process ultimately results in a rule that has a singleor
as the root node and one sub-rule for each of its condition elements. Each sub-rule is activated and executed like any normal rule, with no special behavior or interaction between the sub-rules.Therefore, consider the
or
condition element a shortcut for generating two or more similar rules that, in turn, can create multiple activations when two or more terms of the disjunction are true. exists
-
Use this to specify facts and constraints that must exist. This option is triggered on only the first match, not subsequent matches. If you use this element with multiple patterns, enclose the patterns with parentheses
()
.Figure 78. ExistsExample patterns withexists
exists Person( firstName == "John") exists (Person( firstName == "John", age == 42 )) exists (Person( firstName == "John" ) and Person( lastName == "Doe" ))
not
-
Use this to specify facts and constraints that must not exist. If you use this element with multiple patterns, enclose the patterns with parentheses
()
.Figure 79. NotExample patterns withnot
not Person( firstName == "John") not (Person( firstName == "John", age == 42 )) not (Person( firstName == "John" ) and Person( lastName == "Doe" ))
forall
-
Use this to verify whether all facts that match the first pattern match all the remaining patterns. When a
forall
construct is satisfied, the rule evaluates totrue
. This element is a scope delimiter, so it can use any previously bound variable, but no variable bound inside of it is available for use outside of it.Figure 80. ForallExample rule withforall
rule "All full-time employees have red ID badges" when forall( $emp : Employee( type == "fulltime" ) Employee( this == $emp, badgeColor = "red" ) ) then // True, all full-time employees have red ID badges. end
In this example, the rule selects all
Employee
objects whose type is"fulltime"
. For each fact that matches this pattern, the rule evaluates the patterns that follow (badge color) and if they match, the rule evaluates totrue
.To state that all facts of a given type in the working memory of the Drools engine must match a set of constraints, you can use
forall
with a single pattern for simplicity.Example rule withforall
and a single patternrule "All full-time employees have red ID badges" when forall( Employee( badgeColor = "red" ) ) then // True, all full-time employees have red ID badges. end
You can use
forall
constructs with multiple patterns or nest them with other condition elements, such as inside anot
element construct.Example rule withforall
and multiple patternsrule "All employees have health and dental care programs" when forall( $emp : Employee() HealthCare( employee == $emp ) DentalCare( employee == $emp ) ) then // True, all employees have health and dental care. end
Example rule withforall
andnot
rule "Not all employees have health and dental care" when not ( forall( $emp : Employee() HealthCare( employee == $emp ) DentalCare( employee == $emp ) ) ) then // True, not all employees have health and dental care. end
The format forall( p1 p2 p3 …)
is equivalent tonot( p1 and not( and p2 p3 … ) )
. from
-
Use this to specify a data source for a pattern. This enables the Drools engine to reason over data that is not in the working memory. The data source can be a sub-field on a bound variable or the result of a method call. The expression used to define the object source is any expression that follows regular MVEL syntax. Therefore, the
from
element enables you to easily use object property navigation, execute method calls, and access maps and collection elements.Figure 81. fromExample rule withfrom
and pattern bindingrule "Validate zipcode" when Person( $personAddress : address ) Address( zipcode == "23920W" ) from $personAddress then // Zip code is okay. end
Example rule withfrom
and a graph notationrule "Validate zipcode" when $p : Person() $a : Address( zipcode == "23920W" ) from $p.address then // Zip code is okay. end
Example rule withfrom
to iterate over all objectsrule "Apply 10% discount to all items over US$ 100 in an order" when $order : Order() $item : OrderItem( value > 100 ) from $order.items then // Apply discount to `$item`. end
For large collections of objects, instead of adding an object with a large graph that the Drools engine must iterate over frequently, add the collection directly to the KIE session and then join the collection in the condition, as shown in the following example:
when $order : Order() OrderItem( value > 100, order == $order )
Example rule withfrom
andlock-on-active
rule attributerule "Assign people in North Carolina (NC) to sales region 1" ruleflow-group "test" lock-on-active true when $p : Person() $a : Address( state == "NC" ) from $p.address then modify ($p) {} // Assign the person to sales region 1. end rule "Apply a discount to people in the city of Raleigh" ruleflow-group "test" lock-on-active true when $p : Person() $a : Address( city == "Raleigh" ) from $p.address then modify ($p) {} // Apply discount to the person. end
Using
from
withlock-on-active
rule attribute can result in rules not being executed. You can address this issue in one of the following ways:-
Avoid using the
from
element when you can insert all facts into the working memory of the Drools engine or use nested object references in your constraint expressions. -
Place the variable used in the
modify()
block as the last sentence in your rule condition. -
Avoid using the
lock-on-active
rule attribute when you can explicitly manage how rules within the same ruleflow group place activations on one another.
The pattern that contains a
from
clause cannot be followed by another pattern starting with a parenthesis. The reason for this restriction is that the DRL parser reads thefrom
expression as"from $l (String() or Number())"
and it cannot differentiate this expression from a function call. The simplest workaround to this is to wrap thefrom
clause in parentheses, as shown in the following example:Example rules withfrom
used incorrectly and correctly// Do not use `from` in this way: rule R when $l : List() String() from $l (String() or Number()) then // Actions end // Use `from` in this way instead: rule R when $l : List() (String() from $l) (String() or Number()) then // Actions end
-
entry-point
-
Use this to define an entry point, or event stream, corresponding to a data source for the pattern. This element is typically used with the
from
condition element. You can declare an entry point for events so that the Drools engine uses data from only that entry point to evaluate the rules. You can declare an entry point either implicitly by referencing it in DRL rules or explicitly in your Java application.Example rule withfrom entry-point
rule "Authorize withdrawal" when WithdrawRequest( $ai : accountId, $am : amount ) from entry-point "ATM Stream" CheckingAccount( accountId == $ai, balance > $am ) then // Authorize withdrawal. end
Example Java application code with EntryPoint object and inserted factsimport org.kie.api.runtime.KieSession; import org.kie.api.runtime.rule.EntryPoint; // Create your KIE base and KIE session as usual: KieSession session = ... // Create a reference to the entry point: EntryPoint atmStream = session.getEntryPoint("ATM Stream"); // Start inserting your facts into the entry point: atmStream.insert(aWithdrawRequest);
collect
-
Use this to define a collection of objects that the rule can use as part of the condition. The rule obtains the collection either from a specified source or from the working memory of the Drools engine. The result pattern of the
collect
element can be any concrete class that implements thejava.util.Collection
interface and provides a default no-arg public constructor. You can use Java collections likeList
,LinkedList
, andHashSet
, or your own class. If variables are bound before thecollect
element in a condition, you can use the variables to constrain both your source and result patterns. However, any binding made inside thecollect
element is not available for use outside of it.Figure 82. CollectExample rule withcollect
import java.util.List rule "Raise priority when system has more than three pending alarms" when $system : System() $alarms : List( size >= 3 ) from collect( Alarm( system == $system, status == 'pending' ) ) then // Raise priority because `$system` has three or more `$alarms` pending. end
In this example, the rule assesses all pending alarms in the working memory of the Drools engine for each given system and groups them in a
List
. If three or more alarms are found for a given system, the rule is executed.You can also use the
collect
element with nestedfrom
elements, as shown in the following example:Example rule withcollect
and nestedfrom
import java.util.LinkedList; rule "Send a message to all parents" when $town : Town( name == 'Paris' ) $mothers : LinkedList() from collect( Person( children > 0 ) from $town.getPeople() ) then // Send a message to all parents. end
accumulate
-
Use this to iterate over a collection of objects, execute custom actions for each of the elements, and return one or more result objects (if the constraints evaluate to
true
). This element is a more flexible and powerful form of thecollect
condition element. You can use predefined functions in youraccumulate
conditions or implement custom functions as needed. You can also use the abbreviationacc
foraccumulate
in rule conditions.Use the following format to define
accumulate
conditions in rules:Preferred format foraccumulate
accumulate( <source pattern>; <functions> [;<constraints>] )
Figure 83. AccumulateAlthough the Drools engine supports alternate formats for the accumulate
element for backward compatibility, this format is preferred for optimal performance in rules and applications.The Drools engine supports the following predefined
accumulate
functions. These functions accept any expression as input.-
average
-
min
-
max
-
count
-
sum
-
collectList
-
collectSet
In the following example rule,
min
,max
, andaverage
areaccumulate
functions that calculate the minimum, maximum, and average temperature values over all the readings for each sensor:Example rule withaccumulate
to calculate temperature valuesrule "Raise alarm" when $s : Sensor() accumulate( Reading( sensor == $s, $temp : temperature ); $min : min( $temp ), $max : max( $temp ), $avg : average( $temp ); $min < 20, $avg > 70 ) then // Raise the alarm. end
The following example rule uses the
average
function withaccumulate
to calculate the average profit for all items in an order:Example rule withaccumulate
to calculate average profitrule "Average profit" when $order : Order() accumulate( OrderItem( order == $order, $cost : cost, $price : price ); $avgProfit : average( 1 - $cost / $price ) ) then // Average profit for `$order` is `$avgProfit`. end
To use custom, domain-specific functions in
accumulate
conditions, create a Java class that implements theorg.kie.api.runtime.rule.AccumulateFunction
interface. For example, the following Java class defines a custom implementation of anAverageData
function:Example Java class with custom implementation ofaverage
function// An implementation of an accumulator capable of calculating average values public class AverageAccumulateFunction implements org.kie.api.runtime.rule.AccumulateFunction<AverageAccumulateFunction.AverageData> { public void readExternal(ObjectInput in) throws IOException, ClassNotFoundException { } public void writeExternal(ObjectOutput out) throws IOException { } public static class AverageData implements Externalizable { public int count = 0; public double total = 0; public AverageData() {} public void readExternal(ObjectInput in) throws IOException, ClassNotFoundException { count = in.readInt(); total = in.readDouble(); } public void writeExternal(ObjectOutput out) throws IOException { out.writeInt(count); out.writeDouble(total); } } /* (non-Javadoc) * @see org.kie.api.runtime.rule.AccumulateFunction#createContext() */ public AverageData createContext() { return new AverageData(); } /* (non-Javadoc) * @see org.kie.api.runtime.rule.AccumulateFunction#init(java.io.Serializable) */ public void init(AverageData context) { context.count = 0; context.total = 0; } /* (non-Javadoc) * @see org.kie.api.runtime.rule.AccumulateFunction#accumulate(java.io.Serializable, java.lang.Object) */ public void accumulate(AverageData context, Object value) { context.count++; context.total += ((Number) value).doubleValue(); } /* (non-Javadoc) * @see org.kie.api.runtime.rule.AccumulateFunction#reverse(java.io.Serializable, java.lang.Object) */ public void reverse(AverageData context, Object value) { context.count--; context.total -= ((Number) value).doubleValue(); } /* (non-Javadoc) * @see org.kie.api.runtime.rule.AccumulateFunction#getResult(java.io.Serializable) */ public Object getResult(AverageData context) { return new Double( context.count == 0 ? 0 : context.total / context.count ); } /* (non-Javadoc) * @see org.kie.api.runtime.rule.AccumulateFunction#supportsReverse() */ public boolean supportsReverse() { return true; } /* (non-Javadoc) * @see org.kie.api.runtime.rule.AccumulateFunction#getResultType() */ public Class< ? > getResultType() { return Number.class; } }
To use the custom function in a DRL rule, import the function using the
import accumulate
statement:Format to import a custom functionimport accumulate <class_name> <function_name>
Example rule with the importedaverage
functionimport accumulate AverageAccumulateFunction.AverageData average rule "Average profit" when $order : Order() accumulate( OrderItem( order == $order, $cost : cost, $price : price ); $avgProfit : average( 1 - $cost / $price ) ) then // Average profit for `$order` is `$avgProfit`. end
For backward compatibility, the Drools engine also supports the configuration of
accumulate
functions through configuration files and system properties, but this is a deprecated method. To configure theaverage
function from the previous example using the configuration file or system property, set a property as shown in the following example:drools.accumulate.function.average = AverageAccumulateFunction.AverageData
Note that
drools.accumulate.function
is a required prefix,average
is how the function is used in the DRL files, andAverageAccumulateFunction.AverageData
is the fully qualified name of the class that implements the function behavior. -
accumulate
alternate syntax for a single function with return type-
The accumulate syntax evolved over time with the goal of becoming more compact and expressive. Nevertheless, Drools still supports previous syntaxes for backward compatibility purposes.
In case the rule is using a single accumulate function on a given accumulate, the author may add a pattern for the result object and use the "from" keyword to link it to the accumulate result.
Example: a rule to apply a 10% discount on orders over $100 could be written in the following way:
rule "Apply 10% discount to orders over US$ 100,00" when $order : Order() $total : Number( doubleValue > 100 ) from accumulate( OrderItem( order == $order, $value : value ), sum( $value ) ) then // apply discount to $order end
In the previous example, the accumulate element is using only one function (sum), and so, the rules author opted to explicitly write a pattern for the result type of the accumulate function (Number) and write the constraints inside it. There are no problems in using this syntax over the compact syntax presented before, except that is is a bit more verbose. Also note that it is not allowed to use both the return type and the functions binding in the same accumulate statement.
Compile-time checks are performed in order to ensure the pattern used with the "
from
" keyword is assignable from the result of the accumulate function used.With this syntax, the "
from
" binds to the single result returned by the accumulate function, and it does not iterate.In the previous example, "
$total
" is bound to the result returned by the accumulate sum() function.As another example however, if the result of the accumulate function is a collection, "
from
" still binds to the single result and it does not iterate:rule "Person names" when $x : Object() from accumulate(MyPerson( $val : name ); collectList( $val ) ) then // $x is a List end
The bound "
$x : Object()
" is the List itself, returned by the collectList accumulate function used.This is an important distinction to highlight, as the "
from
" keyword can also be used separately of accumulate, to iterate over the elements of a collection:rule "Iterate the numbers" when $xs : List() $x : Integer() from $xs then // $x matches and binds to each Integer in the collection end
While this syntax is still supported for backward compatibility purposes, for this and other reasons we encourage rule authors to make use instead of the preferred
accumulate
syntax (described previously), to avoid any potential pitfalls. accumulate
with inline custom code-
Another possible syntax for the
accumulate
is to define inline custom code, instead of using accumulate functions.The use of accumulate with inline custom code is not a good practice for several reasons, including difficulties on maintaining and testing rules that use them, as well as the inability of reusing that code. Implementing your own accumulate functions is very simple and straightforward, they are easy to unit test and to use. This form of accumulate is supported for backward compatibility only.
Only limited support for inline accumulate is provided while using the executable model. For example, you cannot use an external binding in the code while using the MVEL dialect:
rule R dialect "mvel" when String( $l : length ) $sum : Integer() from accumulate ( Person( age > 18, $age : age ), init( int sum = 0 * $l; ), action( sum += $age; ), reverse( sum -= $age; ), result( sum ) )
The general syntax of the
accumulate
CE with inline custom code is:<result pattern> from accumulate( <source pattern>, init( <init code> ), action( <action code> ), reverse( <reverse code> ), result( <result expression> ) )
The meaning of each of the elements is the following:
-
<source pattern>: the source pattern is a regular pattern that the Drools engine will try to match against each of the source objects.
-
<init code>: this is a semantic block of code in the selected dialect that will be executed once for each tuple, before iterating over the source objects.
-
<action code>: this is a semantic block of code in the selected dialect that will be executed for each of the source objects.
-
<reverse code>: this is an optional semantic block of code in the selected dialect that if present will be executed for each source object that no longer matches the source pattern. The objective of this code block is to undo any calculation done in the <action code> block, so that the Drools engine can do decremental calculation when a source object is modified or deleted, hugely improving performance of these operations.
-
<result expression>: this is a semantic expression in the selected dialect that is executed after all source objects are iterated.
-
<result pattern>: this is a regular pattern that the Drools engine tries to match against the object returned from the <result expression>. If it matches, the
accumulate
conditional element evaluates to true and the Drools engine proceeds with the evaluation of the next CE in the rule. If it does not matches, theaccumulate
CE evaluates to false and the Drools engine stops evaluating CEs for that rule.
It is easier to understand if we look at an example:
rule "Apply 10% discount to orders over US$ 100,00" when $order : Order() $total : Number( doubleValue > 100 ) from accumulate( OrderItem( order == $order, $value : value ), init( double total = 0; ), action( total += $value; ), reverse( total -= $value; ), result( total ) ) then // apply discount to $order end
In the previous example, for each
Order
in the Working Memory, the Drools engine will execute the init code initializing the total variable to zero. Then it will iterate over allOrderItem
objects for that order, executing the action for each one (in the example, it will sum the value of all items into the total variable). After iterating over allOrderItem
objects, it will return the value corresponding to the result expression (in the previous example, the value of variabletotal
). Finally, the Drools engine will try to match the result with theNumber
pattern, and if the double value is greater than 100, the rule will fire.The example used Java as the semantic dialect, and as such, note that the usage of the semicolon as statement delimiter is mandatory in the init, action and reverse code blocks. The result is an expression and, as such, it does not admit ';'. If the user uses any other dialect, he must comply to that dialect’s specific syntax.
As mentioned before, the reverse code is optional, but it is strongly recommended that the user writes it in order to benefit from the improved performance on update and delete.
The
accumulate
CE can be used to execute any action on source objects. The following example instantiates and populates a custom object:rule "Accumulate using custom objects" when $person : Person( $likes : likes ) $cheesery : Cheesery( totalAmount > 100 ) from accumulate( $cheese : Cheese( type == $likes ), init( Cheesery cheesery = new Cheesery(); ), action( cheesery.addCheese( $cheese ); ), reverse( cheesery.removeCheese( $cheese ); ), result( cheesery ) ); then // do something end
-
eval
-
The conditional element
eval
is essentially a catch-all which allows any semantic code (that returns a primitive boolean) to be executed. This code can refer to variables that were bound in the conditions of the rule and functions in the rule package. Overuse ofeval
reduces the declarativeness of your rules and can result in a poorly performing Drools engine. Whileeval
can be used anywhere in the patterns, it is typically added as the last conditional element in the conditions of a rule.Figure 84. EvalInstances of
eval
cannot be indexed and thus are not as efficient as Field Constraints. However this makes them ideal for being used when functions return values that change over time, which is not allowed within Field Constraints.For those who are familiar with Drools 2.x lineage, the old Drools parameter and condition tags are equivalent to binding a variable to an appropriate type, and then using it in an
eval
node.p1 : Parameter() p2 : Parameter() eval( p1.getList().containsKey( p2.getItem() ) )
p1 : Parameter() p2 : Parameter() // call function isValid in the LHS eval( isValid( p1, p2 ) )
5.1.8.9. OOPath syntax with graphs of objects in DRL rule conditions
OOPath is an object-oriented syntax extension of XPath that is designed for browsing graphs of objects in DRL rule condition constraints. OOPath uses the compact notation from XPath for navigating through related elements while handling collections and filtering constraints, and is specifically useful for graphs of objects.
When the field of a fact is a collection, you can use the from
condition element (keyword) to bind and reason over all the items in that collection one by one. If you need to browse a graph of objects in the rule condition constraints, the extensive use of the from
condition element results in a verbose and repetitive syntax, as shown in the following example:
from
rule "Find all grades for Big Data exam"
when
$student: Student( $plan: plan )
$exam: Exam( course == "Big Data" ) from $plan.exams
$grade: Grade() from $exam.grades
then
// Actions
end
In this example, the domain model contains a Student
object with a Plan
of study. The Plan
can have zero or more Exam
instances and an Exam
can have zero or more Grade
instances. Only the root object of the graph, the Student
in this case, needs to be in the working memory of the Drools engine for this rule setup to function.
As a more efficient alternative to using extensive from
statements, you can use the abbreviated OOPath syntax, as shown in the following example:
rule "Find all grades for Big Data exam"
when
Student( $grade: /plan/exams[course == "Big Data"]/grades )
then
// Actions
end
Formally, the core grammar of an OOPath expression is defined in extended Backus-Naur form (EBNF) notation in the following way:
OOPExpr = [ID ( ":" | ":=" )] ( "/" | "?/" ) OOPSegment { ( "/" | "?/" | "." ) OOPSegment } ;
OOPSegment = ID ["#" ID] ["[" ( Number | Constraints ) "]"]
In practice, an OOPath expression has the following features and capabilities:
-
Starts with a forward slash
/
or with a question mark and forward slash?/
if it is a non-reactive OOPath expression (described later in this section). -
Can dereference a single property of an object with the period
.
operator. -
Can dereference multiple properties of an object with the forward slash
/
operator. If a collection is returned, the expression iterates over the values in the collection. -
Can filter out traversed objects that do not satisfy one or more constraints. The constraints are written as predicate expressions between square brackets, as shown in the following example:
Constraints as a predicate expressionStudent( $grade: /plan/exams[ course == "Big Data" ]/grades )
-
Can downcast a traversed object to a subclass of the class declared in the generic collection. Subsequent constraints can also safely access the properties declared only in that subclass, as shown in the following example. Objects that are not instances of the class specified in this inline cast are automatically filtered out.
Constraints with downcast objectsStudent( $grade: /plan/exams#AdvancedExam[ course == "Big Data", level > 3 ]/grades )
-
Can backreference an object of the graph that was traversed before the currently iterated graph. For example, the following OOPath expression matches only the grades that are above the average for the passed exam:
Constraints with backreferenced objectStudent( $grade: /plan/exams/grades[ result > ../averageResult ] )
-
Can recursively be another OOPath expression, as shown in the following example:
Recursive constraint expressionStudent( $exam: /plan/exams[ /grades[ result > 20 ] ] )
-
Can access objects by their index between square brackets
[]
, as shown in the following example. To adhere to Java convention, OOPath indexes are 0-based, while XPath indexes are 1-based.Constraints with access to objects by indexStudent( $grade: /plan/exams[0]/grades )
OOPath expressions can be reactive or non-reactive. The Drools engine does not react to updates involving a deeply nested object that is traversed during the evaluation of an OOPath expression.
To make these objects reactive to changes, modify the objects to extend the class org.drools.core.phreak.ReactiveObject
. After you modify an object to extend the ReactiveObject
class, the domain object invokes the inherited method notifyModification
to notify the Drools engine when one of the fields has been updated, as shown in the following example:
public void setCourse(String course) {
this.course = course;
notifyModification(this);
}
With the following corresponding OOPath expression, when an exam is moved to a different course, the rule is re-executed and the list of grades matching the rule is recomputed:
Student( $grade: /plan/exams[ course == "Big Data" ]/grades )
You can also use the ?/
separator instead of the /
separator to disable reactivity in only one sub-portion of an OOPath expression, as shown in the following example:
Student( $grade: /plan/exams[ course == "Big Data" ]?/grades )
With this example, the Drools engine reacts to a change made to an exam or if an exam is added to the plan, but not if a new grade is added to an existing exam.
If an OOPath portion is non-reactive, all remaining portions of the OOPath expression also become non-reactive. For example, the following OOPath expression is completely non-reactive:
Student( $grade: ?/plan/exams[ course == "Big Data" ]/grades )
For this reason, you cannot use the ?/
separator more than once in the same OOPath expression. For example, the following expression causes a compilation error:
Student( $grade: /plan?/exams[ course == "Big Data" ]?/grades )
Another alternative for enabling OOPath expression reactivity is to use the dedicated implementations for List
and Set
interfaces in Drools. These implementations are the ReactiveList
and ReactiveSet
classes. A ReactiveCollection
class is also available. The implementations also provide reactive support for performing mutable operations through the Iterator
and ListIterator
classes.
The following example class uses these classes to configure OOPath expression reactivity:
public class School extends AbstractReactiveObject {
private String name;
private final List<Child> children = new ReactiveList<Child>(); (1)
public void setName(String name) {
this.name = name;
notifyModification(); (2)
}
public void addChild(Child child) {
children.add(child); (3)
// No need to call `notifyModification()` here
}
}
1 | Uses the ReactiveList instance for reactive support over the standard Java List instance. |
2 | Uses the required notifyModification() method for when a field is changed in reactive support. |
3 | The children field is a ReactiveList instance, so the notifyModification() method call is not required. The notification is handled automatically, like all other mutating operations performed over the children field. |
5.1.9. Rule actions in DRL (THEN)
The then
part of the rule (also known as the Right Hand Side (RHS) of the rule) contains the actions to be performed when the conditional part of the rule has been met. Actions consist of one or more methods that execute consequences based on the rule conditions and on available data objects in the package. For example, if a bank requires loan applicants to be over 21 years of age (with a rule condition Applicant( age < 21 )
) and a loan applicant is under 21 years old, the then
action of an "Underage"
rule would be setApproved( false )
, declining the loan because the applicant is under age.
The main purpose of rule actions is to insert, delete, or modify data in the working memory of the Drools engine. Effective rule actions are small, declarative, and readable. If you need to use imperative or conditional code in rule actions, then divide the rule into multiple smaller and more declarative rules.
rule "Underage"
when
application : LoanApplication()
Applicant( age < 21 )
then
application.setApproved( false );
application.setExplanation( "Underage" );
end
5.1.9.1. Supported rule action methods in DRL
DRL supports the following rule action methods that you can use in DRL rule actions. You can use these methods to modify the working memory of the Drools engine without having to first reference a working memory instance. These methods act as shortcuts to the methods provided by the RuleContext
class in your Drools distribution.
For all rule action methods, see the Drools RuleContext.java page in GitHub.
set
-
Use this to set the value of a field.
set<field> ( <value> )
Example rule action to set the values of a loan application approval$application.setApproved ( false ); $application.setExplanation( "has been bankrupt" );
modify
-
Use this to specify fields to be modified for a fact and to notify the Drools engine of the change. This method provides a structured approach to fact updates. It combines the
update
operation with setter calls to change object fields.modify ( <fact-expression> ) { <expression>, <expression>, ... }
Example rule action to modify a loan application amount and approvalmodify( LoanApplication ) { setAmount( 100 ), setApproved ( true ) }
update
-
Use this to specify fields and the entire related fact to be updated and to notify the Drools engine of the change. After a fact has changed, you must call
update
before changing another fact that might be affected by the updated values. To avoid this added step, use themodify
method instead.update ( <object, <handle> ) // Informs the Drools engine that an object has changed update ( <object> ) // Causes `KieSession` to search for a fact handle of the object
Example rule action to update a loan application amount and approvalLoanApplication.setAmount( 100 ); update( LoanApplication );
If you provide property-change listeners, you do not need to call this method when an object changes. For more information about property-change listeners, see Property-change settings and listeners for fact types. insert
-
Use this to insert a
new
fact into the working memory of the Drools engine and to define resulting fields and values as needed for the fact.insert( new <object> );
Example rule action to insert a new loan applicant objectinsert( new Applicant() );
insertLogical
-
Use this to insert a
new
fact logically into the Drools engine. The Drools engine is responsible for logical decisions on insertions and retractions of facts. After regular or stated insertions, facts must be retracted explicitly. After logical insertions, the facts that were inserted are automatically retracted when the conditions in the rules that inserted the facts are no longer true.insertLogical( new <object> );
Example rule action to logically insert a new loan applicant objectinsertLogical( new Applicant() );
delete
-
Use this to remove an object from the Drools engine. The keyword
retract
is also supported in DRL and executes the same action, butdelete
is typically preferred in DRL code for consistency with the keywordinsert
.delete( <object> );
Example rule action to delete a loan applicant objectdelete( Applicant );
5.1.9.2. Other rule action methods from drools
variable
In addition to the standard rule action methods, the Drools engine supports methods in conjunction with the predefined drools
variable that you can also use in rule actions.
You can use the drools
variable to call methods from the org.kie.api.runtime.rule.RuleContext
class in your Drools distribution, which is also the class that the standard rule action methods are based on. For all drools
rule action options,
see the Drools RuleContext.java page in GitHub.
The drools
variable contains methods that provide information about the firing rule and the set of facts that activated the firing rule:
-
drools.getRule().getName()
: Returns the name of the currently firing rule. -
drools.getMatch()
: Returns theMatch
that activated the currently firing rule. It contains information that is useful for logging and debugging purposes, for instancedrools.getMatch().getObjects()
returns the list of objects, enabling rule to fire in the proper tuple order.
From the drools
variable, you can also obtain a reference to the KieRuntime
providing useful methods to interact with the running session, for example:
-
drools.getKieRuntime().halt()
: Terminates rule execution if a user or application previously calledfireUntilHalt()
. When a user or application callsfireUntilHalt()
method, the Drools engine starts inactive
mode and evaluates rules until the user or application explicitly callshalt()
method. Otherwise, by default, the Drools engine runs inpassive
mode and evaluates rules only when a user or an application explicitly callsfireAllRules()
method. -
drools.getKieRuntime().getAgenda()
: Returns a reference to the KIE sessionAgenda
, and in turn provides access to rule activation groups, rule agenda groups, and ruleflow groups.
drools.getKieRuntime().getAgenda().getAgendaGroup( "CleanUp" ).setFocus();
+ This example sets the focus to a specified agenda group to which the rule belongs.
-
drools.getKieRuntime().setGlobal()
,~.getGlobal()
,~.getGlobals()
: Sets or retrieves global variables. -
drools.getKieRuntime().getEnvironment()
: Returns the runtimeEnvironment
, similar to your operating system environment. -
drools.getKieRuntime().getQueryResults(<string> query)
: Runs a query and returns the results.
5.1.9.3. Advanced rule actions with conditional and named consequences
In general, effective rule actions are small, declarative, and readable. However, in some cases, the limitation of having a single consequence for each rule can be challenging and lead to verbose and repetitive rule syntax, as shown in the following example rules:
rule "Give 10% discount to customers older than 60"
when
$customer : Customer( age > 60 )
then
modify($customer) { setDiscount( 0.1 ) };
end
rule "Give free parking to customers older than 60"
when
$customer : Customer( age > 60 )
$car : Car( owner == $customer )
then
modify($car) { setFreeParking( true ) };
end
A partial solution to the repetition is to make the second rule extend the first rule, as shown in the following modified example:
rule "Give 10% discount to customers older than 60"
when
$customer : Customer( age > 60 )
then
modify($customer) { setDiscount( 0.1 ) };
end
rule "Give free parking to customers older than 60"
extends "Give 10% discount to customers older than 60"
when
$car : Car( owner == $customer )
then
modify($car) { setFreeParking( true ) };
end
As a more efficient alternative, you can consolidate the two rules into a single rule with modified conditions and labelled corresponding rule actions, as shown in the following consolidated example:
rule "Give 10% discount and free parking to customers older than 60"
when
$customer : Customer( age > 60 )
do[giveDiscount]
$car : Car( owner == $customer )
then
modify($car) { setFreeParking( true ) };
then[giveDiscount]
modify($customer) { setDiscount( 0.1 ) };
end
This example rule uses two actions: the usual default action and another action named giveDiscount
. The giveDiscount
action is activated in the condition with the keyword do
when a customer older than 60 years old is found in the KIE base, regardless of whether or not the customer owns a car.
You can configure the activation of a named consequence with an additional condition, such as the if
statement in the following example. The condition in the if
statement is always evaluated on the pattern that immediately precedes it.
rule "Give free parking to customers older than 60 and 10% discount to golden ones among them"
when
$customer : Customer( age > 60 )
if ( type == "Golden" ) do[giveDiscount]
$car : Car( owner == $customer )
then
modify($car) { setFreeParking( true ) };
then[giveDiscount]
modify($customer) { setDiscount( 0.1 ) };
end
You can also evaluate different rule conditions using a nested if
and else if
construct, as shown in the following more complex example:
rule "Give free parking and 10% discount to over 60 Golden customer and 5% to Silver ones"
when
$customer : Customer( age > 60 )
if ( type == "Golden" ) do[giveDiscount10]
else if ( type == "Silver" ) break[giveDiscount5]
$car : Car( owner == $customer )
then
modify($car) { setFreeParking( true ) };
then[giveDiscount10]
modify($customer) { setDiscount( 0.1 ) };
then[giveDiscount5]
modify($customer) { setDiscount( 0.05 ) };
end
This example rule gives a 10% discount and free parking to Golden customers over 60, but only a 5% discount without free parking to Silver customers. The rule activates the consequence named giveDiscount5
with the keyword break
instead of do
. The keyword do
schedules a consequence in the Drools engine agenda, enabling the remaining part of the rule conditions to continue being evaluated, while break
blocks any further condition evaluation. If a named consequence does not correspond to any condition with do
but is activated with break
, the rule fails to compile because the conditional part of the rule is never reached.
5.1.10. Comments in DRL files
DRL supports single-line comments prefixed with a double forward slash //
and multi-line comments enclosed with a forward slash and asterisk /* … */
. You can use DRL comments to annotate rules or any related components in DRL files. DRL comments are ignored by the Drools engine when the DRL file is processed.
rule "Underage"
// This is a single-line comment.
when
$application : LoanApplication() // This is an in-line comment.
Applicant( age < 21 )
then
/* This is a multi-line comment
in the rule actions. */
$application.setApproved( false );
$application.setExplanation( "Underage" );
end

The hash symbol # is not supported for DRL comments.
|
5.1.11. Error messages for DRL troubleshooting
Drools provides standardized messages for DRL errors to help you troubleshoot and resolve problems in your DRL files. The error messages use the following format:

-
1st Block: Error code
-
2nd Block: Line and column in the DRL source where the error occurred
-
3rd Block: Description of the problem
-
4th Block: Component in the DRL source (rule, function, query) where the error occurred
-
5th Block: Pattern in the DRL source where the error occurred (if applicable)
Drools supports the following standardized error messages:
- 101: no viable alternative
-
Indicates that the parser reached a decision point but could not identify an alternative.
Example rule with incorrect spelling1: rule "simple rule" 2: when 3: exists Person() 4: exits Student() // Must be `exists` 5: then 6: end
Error message[ERR 101] Line 4:4 no viable alternative at input 'exits' in rule "simple rule"
Example rule without a rule name1: package org.drools.examples; 2: rule // Must be `rule "rule name"` (or `rule rule_name` if no spacing) 3: when 4: Object() 5: then 6: System.out.println("A RHS"); 7: end
Error message[ERR 101] Line 3:2 no viable alternative at input 'when'
In this example, the parser encountered the keyword
when
but expected the rule name, so it flagswhen
as the incorrect expected token.Example rule with incorrect syntax1: rule "simple rule" 2: when 3: Student( name == "Andy ) // Must be `"Andy"` 4: then 5: end
Error message[ERR 101] Line 0:-1 no viable alternative at input '<eof>' in rule "simple rule" in pattern Student
A line and column value of 0:-1
means the parser reached the end of the source file (<eof>
) but encountered incomplete constructs, usually due to missing quotation marks"…"
, apostrophes'…'
, or parentheses(…)
. - 102: mismatched input
-
Indicates that the parser expected a particular symbol that is missing at the current input position.
Example rule with an incomplete rule statement1: rule simple_rule 2: when 3: $p : Person( // Must be a complete rule statement
Error message[ERR 102] Line 0:-1 mismatched input '<eof>' expecting ')' in rule "simple rule" in pattern Person
A line and column value of 0:-1
means the parser reached the end of the source file (<eof>
) but encountered incomplete constructs, usually due to missing quotation marks"…"
, apostrophes'…'
, or parentheses(…)
.Example rule with incorrect syntax1: package org.drools.examples; 2: 3: rule "Wrong syntax" 4: when 5: not( Car( ( type == "tesla", price == 10000 ) || ( type == "kia", price == 1000 ) ) from $carList ) // Must use `&&` operators instead of commas `,` 6: then 7: System.out.println("OK"); 8: end
Error messages[ERR 102] Line 5:36 mismatched input ',' expecting ')' in rule "Wrong syntax" in pattern Car [ERR 101] Line 5:57 no viable alternative at input 'type' in rule "Wrong syntax" [ERR 102] Line 5:106 mismatched input ')' expecting 'then' in rule "Wrong syntax"
In this example, the syntactic problem results in multiple error messages related to each other. The single solution of replacing the commas
,
with&&
operators resolves all errors. If you encounter multiple errors, resolve one at a time in case errors are consequences of previous errors. - 103: failed predicate
-
Indicates that a validating semantic predicate evaluated to
false
. These semantic predicates are typically used to identify component keywords in DRL files, such asdeclare
,rule
,exists
,not
, and others.Example rule with an invalid keyword1: package nesting; 2: 3: import org.drools.compiler.Person 4: import org.drools.compiler.Address 5: 6: Some text // Must be a valid DRL keyword 7: 8: rule "test something" 9: when 10: $p: Person( name=="Michael" ) 11: then 12: $p.name = "other"; 13: System.out.println(p.name); 14: end
Error message[ERR 103] Line 6:0 rule 'rule_key' failed predicate: {(validateIdentifierKey(DroolsSoftKeywords.RULE))}? in rule
The
Some text
line is invalid because it does not begin with or is not a part of a DRL keyword construct, so the parser fails to validate the rest of the DRL file.This error is similar to 102: mismatched input
, but usually involves DRL keywords. - 104: trailing semi-colon not allowed
-
Indicates that an
eval()
clause in a rule condition uses a semicolon;
but must not use one.Example rule witheval()
and trailing semicolon1: rule "simple rule" 2: when 3: eval( abc(); ) // Must not use semicolon `;` 4: then 5: end
Error message[ERR 104] Line 3:4 trailing semi-colon not allowed in rule "simple rule"
- 105: did not match anything
-
Indicates that the parser reached a sub-rule in the grammar that must match an alternative at least once, but the sub-rule did not match anything. The parser has entered a branch with no way out.
Example rule with invalid text in an empty condition1: rule "empty condition" 2: when 3: None // Must remove `None` if condition is empty 4: then 5: insert( new Person() ); 6: end
Error message[ERR 105] Line 2:2 required (...)+ loop did not match anything at input 'WHEN' in rule "empty condition"
In this example, the condition is intended to be empty but the word
None
is used. This error is resolved by removingNone
, which is not a valid DRL keyword, data type, or pattern construct.
5.1.12. Rule units in DRL rule sets
Rule units are experimental in Drools 7. Only supported in Red Hat build of Kogito. |
Rule units are groups of data sources, global variables, and DRL rules that function together for a specific purpose. You can use rule units to partition a rule set into smaller units, bind different data sources to those units, and then execute the individual unit. Rule units are an enhanced alternative to rule-grouping DRL attributes such as rule agenda groups or activation groups for execution control.
Rule units are helpful when you want to coordinate rule execution so that the complete execution of one rule unit triggers the start of another rule unit and so on. For example, assume that you have a set of rules for data enrichment, another set of rules that processes that data, and another set of rules that extract the output from the processed data. If you add these rule sets into three distinct rule units, you can coordinate those rule units so that complete execution of the first unit triggers the start of the second unit and the complete execution of the second unit triggers the start of third unit.
To define a rule unit, implement the RuleUnit
interface as shown in the following example:
package org.mypackage.myunit;
public static class AdultUnit implements RuleUnit {
private int adultAge;
private DataSource<Person> persons;
public AdultUnit( ) { }
public AdultUnit( DataSource<Person> persons, int age ) {
this.persons = persons;
this.age = age;
}
// A data source of `Persons` in this rule unit:
public DataSource<Person> getPersons() {
return persons;
}
// A global variable in this rule unit:
public int getAdultAge() {
return adultAge;
}
// Life-cycle methods:
@Override
public void onStart() {
System.out.println("AdultUnit started.");
}
@Override
public void onEnd() {
System.out.println("AdultUnit ended.");
}
}
In this example, persons
is a source of facts of type Person
. A rule unit data source is a source of the data processed by a given rule unit and represents the entry point that the Drools engine uses to evaluate the rule unit. The adultAge
global variable is accessible from all the rules belonging to this rule unit. The last two methods are part of the rule unit life cycle and are invoked by the Drools engine.
The Drools engine supports the following optional life-cycle methods for rule units:
Method | Invoked when |
---|---|
|
Rule unit execution starts |
|
Rule unit execution ends |
|
Rule unit execution is suspended (used only with |
|
Rule unit execution is resumed (used only with |
|
The consequence of a rule in the rule unit triggers the execution of a different rule unit |
You can add one or more rules to a rule unit. By default, all the rules in a DRL file are automatically associated with a rule unit that follows the naming convention of the DRL file name. If the DRL file is in the same package and has the same name as a class that implements the RuleUnit
interface, then all of the rules in that DRL file implicitly belong to that rule unit. For example, all the rules in the AdultUnit.drl
file in the org.mypackage.myunit
package are automatically part of the rule unit org.mypackage.myunit.AdultUnit
.
To override this naming convention and explicitly declare the rule unit that the rules in a DRL file belong to, use the unit
keyword in the DRL file. The unit
declaration must immediately follow the package declaration and contain the name of the class in that package that the rules in the DRL file are part of.
package org.mypackage.myunit
unit AdultUnit
rule Adult
when
$p : Person(age >= adultAge) from persons
then
System.out.println($p.getName() + " is adult and greater than " + adultAge);
end
Do not mix rules with and without a rule unit in the same KIE base. Mixing two rule paradigms in a KIE base results in a compilation error. |
You can also rewrite the same pattern in a more convenient way using OOPath notation, as shown in the following example:
package org.mypackage.myunit
unit AdultUnit
rule Adult
when
$p : /persons[age >= adultAge]
then
System.out.println($p.getName() + " is adult and greater than " + adultAge);
end
OOPath is an object-oriented syntax extension of XPath that is designed for browsing graphs of objects in DRL rule condition constraints. OOPath uses the compact notation from XPath for navigating through related elements while handling collections and filtering constraints, and is specifically useful for graphs of objects. |
In this example, any matching facts in the rule conditions are retrieved from the persons
data source defined in the DataSource
definition in the rule unit class. The rule condition and action use the adultAge
variable in the same way that a global variable is defined at the DRL file level.
To execute one or more rule units defined in a KIE base, create a new RuleUnitExecutor
class bound to the KIE base, create the rule unit from the relevant data source, and run the rule unit executer:
// Create a `RuleUnitExecutor` class and bind it to the KIE base:
KieBase kbase = kieContainer.getKieBase();
RuleUnitExecutor executor = RuleUnitExecutor.create().bind( kbase );
// Create the `AdultUnit` rule unit using the `persons` data source and run the executor:
RuleUnit adultUnit = new AdultUnit(persons, 18);
executor.run( adultUnit );
Rules are executed by the RuleUnitExecutor
class. The RuleUnitExecutor
class creates KIE sessions and adds the required DataSource
objects to those sessions, and then executes the rules based on the RuleUnit
that is passed as a parameter to the run()
method.
The example execution code produces the following output when the relevant Person
facts are inserted in the persons
data source:
org.mypackage.myunit.AdultUnit started.
Jane is adult and greater than 18
John is adult and greater than 18
org.mypackage.myunit.AdultUnit ended.
Instead of explicitly creating the rule unit instance, you can register the rule unit variables in the executor and pass to the executor the rule unit class that you want to run, and then the executor creates an instance of the rule unit. You can then set the DataSource
definition and other variables as needed before running the rule unit.
executor.bindVariable( "persons", persons );
.bindVariable( "adultAge", 18 );
executor.run( AdultUnit.class );
The name that you pass to the RuleUnitExecutor.bindVariable()
method is used at run time to bind the variable to the field of the rule unit class with the same name. In the previous example, the RuleUnitExecutor
inserts into the new rule unit the data source bound to the "persons"
name and inserts the value 18
bound to the String "adultAge"
into the fields with the corresponding names inside the AdultUnit
class.
To override this default variable-binding behavior, use the @UnitVar
annotation to explicitly define a logical binding name for each field of the rule unit class. For example, the field bindings in the following class are redefined with alternative names:
@UnitVar
package org.mypackage.myunit;
public static class AdultUnit implements RuleUnit {
@UnitVar("minAge")
private int adultAge = 18;
@UnitVar("data")
private DataSource<Person> persons;
}
You can then bind the variables to the executor using those alternative names and run the rule unit:
executor.bindVariable( "data", persons );
.bindVariable( "minAge", 18 );
executor.run( AdultUnit.class );
You can execute a rule unit in passive mode by using the run()
method (equivalent to invoking fireAllRules()
on a KIE session)
or in active mode using the runUntilHalt()
method (equivalent to invoking fireUntilHalt()
on a KIE session). By default, the Drools engine runs in passive mode and evaluates rule units only when a user or an application explicitly calls run()
(or fireAllRules()
for standard rules). If a user or application calls runUntilHalt()
for rule units (or fireUntilHalt()
for standard rules), the Drools engine starts in active mode and evaluates rule units continually until the user or application explicitly calls halt()
.
If you use the runUntilHalt()
method, invoke the method on a separate execution thread to avoid blocking the main thread:
runUntilHalt()
on a separate threadnew Thread( () -> executor.runUntilHalt( adultUnit ) ).start();
5.1.12.1. Data sources for rule units
A rule unit data source is a source of the data processed by a given rule unit and represents the entry point that the Drools engine uses to evaluate the rule unit. A rule unit can have zero or more data sources and each DataSource
definition declared inside a rule unit can correspond to a different entry point into the rule unit executor. Multiple rule units can share a single data source, but each rule unit must use different entry points through which the same objects are inserted.
You can create a DataSource
definition with a fixed set of data in a rule unit class, as shown in the following example:
DataSource<Person> persons = DataSource.create( new Person( "John", 42 ),
new Person( "Jane", 44 ),
new Person( "Sally", 4 ) );
Because a data source represents the entry point of the rule unit, you can insert, update, or delete facts in a rule unit:
// Insert a fact:
Person john = new Person( "John", 42 );
FactHandle johnFh = persons.insert( john );
// Modify the fact and optionally specify modified properties (for property reactivity):
john.setAge( 43 );
persons.update( johnFh, john, "age" );
// Delete the fact:
persons.delete( johnFh );
5.1.12.2. Rule unit execution control
Rule units are helpful when you want to coordinate rule execution so that the execution of one rule unit triggers the start of another rule unit and so on.
To facilitate rule unit execution control, the Drools engine supports the following rule unit methods that you can use in DRL rule actions to coordinate the execution of rule units:
-
drools.run()
: Triggers the execution of a specified rule unit class. This method imperatively interrupts the execution of the rule unit and activates the other specified rule unit. -
drools.guard()
: Prevents (guards) a specified rule unit class from being executed until the associated rule condition is met. This method declaratively schedules the execution of the other specified rule unit. When the Drools engine produces at least one match for the condition in the guarding rule, the guarded rule unit is considered active. A rule unit can contain multiple guarding rules.
As an example of the drools.run()
method, consider the following DRL rules that each belong to a specified rule unit. The NotAdult
rule uses the drools.run( AdultUnit.class )
method to trigger the execution of the AdultUnit
rule unit:
drools.run()
package org.mypackage.myunit
unit AdultUnit
rule Adult
when
Person(age >= 18, $name : name) from persons
then
System.out.println($name + " is adult");
end
package org.mypackage.myunit
unit NotAdultUnit
rule NotAdult
when
$p : Person(age < 18, $name : name) from persons
then
System.out.println($name + " is NOT adult");
modify($p) { setAge(18); }
drools.run( AdultUnit.class );
end
The example also uses a RuleUnitExecutor
class created from the KIE base that was built from these rules and a DataSource
definition of persons
bound to it:
RuleUnitExecutor executor = RuleUnitExecutor.create().bind( kbase );
DataSource<Person> persons = executor.newDataSource( "persons",
new Person( "John", 42 ),
new Person( "Jane", 44 ),
new Person( "Sally", 4 ) );
In this case, the example creates the DataSource
definition directly from the RuleUnitExecutor
class and binds it to the "persons"
variable in a single statement.
The example execution code produces the following output when the relevant Person
facts are inserted in the persons
data source:
Sally is NOT adult
John is adult
Jane is adult
Sally is adult
The NotAdult
rule detects a match when evaluating the person "Sally"
, who is under 18 years old. The rule then modifies
her age to 18
and uses the drools.run( AdultUnit.class )
method to trigger the execution of the AdultUnit
rule unit. The AdultUnit
rule unit contains a rule that can now be executed for all of the 3 persons
in the DataSource
definition.
As an example of the drools.guard()
method, consider the following BoxOffice
class and BoxOfficeUnit
rule unit class:
BoxOffice
classpublic class BoxOffice {
private boolean open;
public BoxOffice( boolean open ) {
this.open = open;
}
public boolean isOpen() {
return open;
}
public void setOpen( boolean open ) {
this.open = open;
}
}
BoxOfficeUnit
rule unit classpublic class BoxOfficeUnit implements RuleUnit {
private DataSource<BoxOffice> boxOffices;
public DataSource<BoxOffice> getBoxOffices() {
return boxOffices;
}
}
The example also uses the following TicketIssuerUnit
rule unit class to keep selling box office tickets for the event as long as at least one box office is open. This rule unit uses DataSource
definitions of persons
and tickets
:
TicketIssuerUnit
rule unit classpublic class TicketIssuerUnit implements RuleUnit {
private DataSource<Person> persons;
private DataSource<AdultTicket> tickets;
private List<String> results;
public TicketIssuerUnit() { }
public TicketIssuerUnit( DataSource<Person> persons, DataSource<AdultTicket> tickets ) {
this.persons = persons;
this.tickets = tickets;
}
public DataSource<Person> getPersons() {
return persons;
}
public DataSource<AdultTicket> getTickets() {
return tickets;
}
public List<String> getResults() {
return results;
}
}
The BoxOfficeUnit
rule unit contains a BoxOfficeIsOpen
DRL rule that uses the drools.guard( TicketIssuerUnit.class )
method to guard the execution of the TicketIssuerUnit
rule unit that distributes the event tickets, as shown in the following DRL rule examples:
drools.guard()
package org.mypackage.myunit;
unit TicketIssuerUnit;
rule IssueAdultTicket when
$p: /persons[ age >= 18 ]
then
tickets.insert(new AdultTicket($p));
end
rule RegisterAdultTicket when
$t: /tickets
then
results.add( $t.getPerson().getName() );
end
package org.mypackage.myunit;
unit BoxOfficeUnit;
rule BoxOfficeIsOpen
when
$box: /boxOffices[ open ]
then
drools.guard( TicketIssuerUnit.class );
end
In this example, so long as at least one box office is open
, the guarded TicketIssuerUnit
rule unit is active and distributes event tickets. When no more box offices are in open
state, the guarded TicketIssuerUnit
rule unit is prevented from being executed.
The following example class illustrates a more complete box office scenario:
DataSource<Person> persons = executor.newDataSource( "persons" );
DataSource<BoxOffice> boxOffices = executor.newDataSource( "boxOffices" );
DataSource<AdultTicket> tickets = executor.newDataSource( "tickets" );
List<String> list = new ArrayList<>();
executor.bindVariable( "results", list );
// Two box offices are open:
BoxOffice office1 = new BoxOffice(true);
FactHandle officeFH1 = boxOffices.insert( office1 );
BoxOffice office2 = new BoxOffice(true);
FactHandle officeFH2 = boxOffices.insert( office2 );
persons.insert(new Person("John", 40));
// Execute `BoxOfficeIsOpen` rule, run `TicketIssuerUnit` rule unit, and execute `RegisterAdultTicket` rule:
executor.run(BoxOfficeUnit.class);
assertEquals( 1, list.size() );
assertEquals( "John", list.get(0) );
list.clear();
persons.insert(new Person("Matteo", 30));
// Execute `RegisterAdultTicket` rule:
executor.run(BoxOfficeUnit.class);
assertEquals( 1, list.size() );
assertEquals( "Matteo", list.get(0) );
list.clear();
// One box office is closed, the other is open:
office1.setOpen(false);
boxOffices.update(officeFH1, office1);
persons.insert(new Person("Mark", 35));
executor.run(BoxOfficeUnit.class);
assertEquals( 1, list.size() );
assertEquals( "Mark", list.get(0) );
list.clear();
// All box offices are closed:
office2.setOpen(false);
boxOffices.update(officeFH2, office2); // Guarding rule is no longer true.
persons.insert(new Person("Edson", 35));
executor.run(BoxOfficeUnit.class); // No execution
assertEquals( 0, list.size() );
5.1.12.3. Rule unit identity conflicts
In rule unit execution scenarios with guarded rule units, a rule can guard multiple rule units and at the same time a rule unit can be guarded and then activated by multiple rules. For these two-way guarding scenarios, rule units must have a clearly defined identity to avoid identity conflicts.
By default, the identity of a rule unit is the rule unit class name and is treated as a singleton class by the RuleUnitExecutor
. This identification behavior is encoded in the getUnitIdentity()
default method of the RuleUnit
interface:
RuleUnit
interfacedefault Identity getUnitIdentity() {
return new Identity( getClass() );
}
In some cases, you may need to override this default identification behavior to avoid conflicting identities between rule units.
For example, the following RuleUnit
class contains a DataSource
definition that accepts any kind of object:
Unit0
rule unit classpublic class Unit0 implements RuleUnit {
private DataSource<Object> input;
public DataSource<Object> getInput() {
return input;
}
}
This rule unit contains the following DRL rule that guards another rule unit based on two conditions (in OOPath notation):
GuardAgeCheck
DRL rule in the rule unitpackage org.mypackage.myunit
unit Unit0
rule GuardAgeCheck
when
$i: /input#Integer
$s: /input#String
then
drools.guard( new AgeCheckUnit($i) );
drools.guard( new AgeCheckUnit($s.length()) );
end
The guarded AgeCheckUnit
rule unit verifies the age of a set of persons
. The AgeCheckUnit
contains a DataSource
definition of the persons
to check, a minAge
variable that it verifies against, and a List
for gathering the results:
AgeCheckUnit
rule unitpublic class AgeCheckUnit implements RuleUnit {
private final int minAge;
private DataSource<Person> persons;
private List<String> results;
public AgeCheckUnit( int minAge ) {
this.minAge = minAge;
}
public DataSource<Person> getPersons() {
return persons;
}
public int getMinAge() {
return minAge;
}
public List<String> getResults() {
return results;
}
}
The AgeCheckUnit
rule unit contains the following DRL rule that performs the verification of the persons
in the data source:
CheckAge
DRL rule in the rule unitpackage org.mypackage.myunit
unit AgeCheckUnit
rule CheckAge
when
$p : /persons{ age > minAge }
then
results.add($p.getName() + ">" + minAge);
end
This example creates a RuleUnitExecutor
class, binds the class to the KIE base that contains these two rule units, and creates
the two DataSource
definitions for the same rule units:
RuleUnitExecutor executor = RuleUnitExecutor.create().bind( kbase );
DataSource<Object> input = executor.newDataSource( "input" );
DataSource<Person> persons = executor.newDataSource( "persons",
new Person( "John", 42 ),
new Person( "Sally", 4 ) );
List<String> results = new ArrayList<>();
executor.bindVariable( "results", results );
You can now insert some objects into the input data source and execute the Unit0
rule unit:
ds.insert("test");
ds.insert(3);
ds.insert(4);
executor.run(Unit0.class);
[Sally>3, John>3]
In this example, the rule unit named AgeCheckUnit
is considered a singleton class and then executed only once, with the minAge
variable set to 3
. Both the String "test"
and the Integer 4
inserted into the input data source can also trigger a second execution with the minAge
variable set to 4
. However, the second execution does not occur because another rule unit with the same identity has already been evaluated.
To resolve this rule unit identity conflict, override the getUnitIdentity()
method in the AgeCheckUnit
class to include also the minAge
variable in the rule unit identity:
AgeCheckUnit
rule unit to override the getUnitIdentity()
methodpublic class AgeCheckUnit implements RuleUnit {
...
@Override
public Identity getUnitIdentity() {
return new Identity(getClass(), minAge);
}
}
With this override in place, the previous example rule unit execution produces the following output:
[John>4, Sally>3, John>3]
The rule units with minAge
set to 3
and 4
are now considered two different rule units and both are executed.
5.1.13. Performance tuning considerations with DRL
The following key concepts or suggested practices can help you optimize DRL rules and Drools engine performance. These concepts are summarized in this section as a convenience and are explained in more detail in the cross-referenced documentation, where applicable. This section will expand or change as needed with new releases of Drools.
- Define the property and value of pattern constraints from left to right
-
In DRL pattern constraints, ensure that the fact property name is on the left side of the operator and that the value (constant or a variable) is on the right side. The property name must always be the key in the index and not the value. For example, write
Person( firstName == "John" )
instead ofPerson( "John" == firstName )
. Defining the constraint property and value from right to left can hinder Drools engine performance.For more information about DRL patterns and constraints, see Rule conditions in DRL (WHEN).
- Use equality operators more than other operator types in pattern constraints when possible
-
Although the Drools engine supports many DRL operator types that you can use to define your business rule logic, the equality operator
==
is evaluated most efficiently by the Drools engine. Whenever practical, use this operator instead of other operator types. For example, the patternPerson( firstName == "John" )
is evaluated more efficiently thanPerson( firstName != "OtherName" )
. In some cases, using only equality operators might be impractical, so consider all of your business logic needs and options as you use DRL operators. - List the most restrictive rule conditions first
-
For rules with multiple conditions, list the conditions from most to least restrictive so that the Drools engine can avoid assessing the entire set of conditions if the more restrictive conditions are not met.
For example, the following conditions are part of a travel-booking rule that applies a discount to travelers who book both a flight and a hotel together. In this scenario, customers rarely book hotels with flights to receive this discount, so the hotel condition is rarely met and the rule is rarely executed. Therefore, the first condition ordering is more efficient because it prevents the Drools engine from evaluating the flight condition frequently and unnecessarily when the hotel condition is not met.
Preferred condition order: hotel and flightwhen $h:hotel() // Rarely booked $f:flight()
Inefficient condition order: flight and hotelwhen $f:flight() $h:hotel() // Rarely booked
For more information about DRL patterns and constraints, see Rule conditions in DRL (WHEN).
- Avoid iterating over large collections of objects with excessive
from
clauses -
Avoid using the
from
condition element in DRL rules to iterate over large collections of objects, as shown in the following example:Example conditions withfrom
clausewhen $c: Company() $e : Employee ( salary > 100000.00) from $c.employees
In such cases, the Drools engine iterates over the large graph every time the rule condition is evaluated and impedes rule evaluation.
Alternatively, instead of adding an object with a large graph that the Drools engine must iterate over frequently, add the collection directly to the KIE session and then join the collection in the condition, as shown in the following example:
Example conditions withoutfrom
clausewhen $c: Company(); Employee (salary > 100000.00, company == $c)
In this example, the Drools engine iterates over the list only one time and can evaluate rules more efficiently.
For more information about the
from
element or other DRL condition elements, see Supported rule condition elements in DRL (keywords). - Use Drools engine event listeners instead of
System.out.println
statements in rules for debug logging -
You can use
System.out.println
statements in your rule actions for debug logging and console output, but doing this for many rules can impede rule evaluation. As a more efficient alternative, use the built-in Drools engine event listeners when possible. If these listeners do not meet your requirements, use a system logging utility supported by the Drools engine, such as Logback, Apache Commons Logging, or Apache Log4j.For more information about supported Drools engine event listeners and logging utilities, see Drools engine event listeners and debug logging.
- Use the
drools-metric
module to identify the obstruction in your rules -
You can use the
drools-metric
module to identify slow rules especially when you process many rules. Thedrools-metric
module can also assist in analyzing the Drools engine performance. Note that thedrools-metric
module is not for production environment use. However, you can perform the analysis in your test environment.To analyze the Drools engine performance using
drools-metric
, first adddrools-metric
to your project dependencies:Example project dependency fordrools-metric
<dependency> <groupId>org.drools</groupId> <artifactId>drools-metric</artifactId> </dependency>
If you want to use
drools-metric
to enable trace logging, configure a logger fororg.drools.metric.util.MetricLogUtils
as shown in the following example:Example logback.xml configuration file<configuration> <logger name="org.drools.metric.util.MetricLogUtils" level="trace"/> ... <configuration>
Alternatively, you can use
drools-metric
to expose the data using Micrometer. To expose the data, enable the Micrometer registry of your choice as shown in the following example:Example project dependency for Micrometer<dependency> <groupId>io.micrometer</groupId> <artifactId>micrometer-registry-jmx</artifactId> <!-- Discover more registries at micrometer.io. --> </dependency>
Example Java code for MicrometerMetrics.addRegitry(new JmxMeterRegistry(s -> null, Clock.SYSTEM));
Regardless of whether you want to use logging or Micrometer, you need to enable
MetricLogUtils
by setting the system propertydrools.metric.logger.enabled
totrue
. Optionally, you can change the microseconds threshold of metric reporting by setting thedrools.metric.logger.threshold
system property.Only node executions exceeding the threshold are reported. The default value is 500
.After configuring the
drools-metric
to use logging, rule execution produces logs as shown in the following example:Example rule execution outputTRACE [JoinNode(6) - [ClassObjectType class=com.sample.Order]], evalCount:1000, elapsedMicro:5962 TRACE [JoinNode(7) - [ClassObjectType class=com.sample.Order]], evalCount:100000, elapsedMicro:95553 TRACE [ AccumulateNode(8) ], evalCount:4999500, elapsedMicro:2172836 TRACE [EvalConditionNode(9)]: cond=com.sample.Rule_Collect_expensive_orders_combination930932360Eval1Invoker@ee2a6922], evalCount:49500, elapsedMicro:18787
This example includes the following key parameters:
-
evalCount
is the number of constraint evaluations against inserted facts during the node execution. WhenevalCount
is used with Micrometer, a counter with the data is calledorg.drools.metric.evaluation.count
. -
elapsedMicro
is the elapsed time of the node execution in microseconds. WhenelapsedMicro
is used with Micrometer, look for a timer calledorg.drools.metric.elapsed.time
.
If you find an outstanding
evalCount
orelapsedMicro
log, correlate the node name withReteDumper.dumpAssociatedRulesRete()
output to identify the rule associated with the node.Example ReteDumper usageReteDumper.dumpAssociatedRulesRete(kbase);
Example ReteDumper output[ AccumulateNode(8) ] : [Collect expensive orders combination] ...
-
5.2. Domain Specific Languages
Domain Specific Languages (or DSLs) are a way of creating a rule language that is dedicated to your problem domain. A set of DSL definitions consists of transformations from DSL "sentences" to DRL constructs, which lets you use of all the underlying rule language and engine features. Given a DSL, you write rules in DSL rule (or DSLR) files, which will be translated into DRL files.
DSL and DSLR files are plain text files, and you can use any text editor to create and modify them. But there are also DSL and DSLR editors, both in the IDE as well as in the web based BRMS, and you can use those as well, although they may not provide you with the full DSL functionality.
5.2.1. When to Use a DSL
DSLs can serve as a layer of separation between rule authoring (and rule authors) and the technical intricacies resulting from the modelling of domain object and the Drools engine’s native language and methods. If your rules need to be read and validated by domain experts (such as business analysts, for instance) who are not programmers, you should consider using a DSL; it hides implementation details and focuses on the rule logic proper. DSL sentences can also act as "templates" for conditional elements and consequence actions that are used repeatedly in your rules, possibly with minor variations. You may define DSL sentences as being mapped to these repeated phrases, with parameters providing a means for accommodating those variations.
DSLs have no impact on the Drools engine at runtime, they are just a compile time feature, requiring a special parser and transformer.
5.2.2. DSL Basics
The Drools DSL mechanism allows you to customise conditional expressions and consequence actions. A global substitution mechanism ("keyword") is also available.
[when]Something is {colour}=Something(colour=="{colour}")
In the preceding example, [when]
indicates the scope of the expression, i.e., whether it is valid for the LHS or the RHS of a rule.
The part after the bracketed keyword is the expression that you use in the rule; typically a natural language expression, but it doesn’t have to be.
The part to the right of the equal sign ("=") is the mapping of the expression into the rule language.
The form of this string depends on its destination, RHS or LHS.
If it is for the LHS, then it ought to be a term according to the regular LHS syntax; if it is for the RHS then it might be a Java statement.
Whenever the DSL parser matches a line from the rule file written in the DSL with an expression in the DSL definition, it performs three steps of string manipulation.
First, it extracts the string values appearing where the expression contains variable names in braces (here: {colour}
). Then, the values obtained from these captures are then interpolated wherever that name, again enclosed in braces, occurs on the right hand side of the mapping.
Finally, the interpolated string replaces whatever was matched by the entire expression in the line of the DSL rule file.
Note that the expressions (i.e., the strings on the left hand side of the equal sign) are used as regular expressions in a pattern matching operation against a line of the DSL rule file, matching all or part of a line. This means you can use (for instance) a '?' to indicate that the preceding character is optional. One good reason to use this is to overcome variations in natural language phrases of your DSL. But, given that these expressions are regular expression patterns, this also means that all "magic" characters of Java’s pattern syntax have to be escaped with a preceding backslash ('\').
It is important to note that the compiler transforms DSL rule files line by line. In the previous example, all the text after "Something is " to the end of the line is captured as the replacement value for "{colour}", and this is used for interpolating the target string. This may not be exactly what you want. For instance, when you intend to merge different DSL expressions to generate a composite DRL pattern, you need to transform a DSLR line in several independent operations. The best way to achieve this is to ensure that the captures are surrounded by characteristic text - words or even single characters. As a result, the matching operation done by the parser plucks out a substring from somewhere within the line. In the example below, quotes are used as distinctive characters. Note that the characters that surround the capture are not included during interpolation, just the contents between them.
As a rule of thumb, use quotes for textual data that a rule editor may want to enter.
You can also enclose the capture with words to ensure that the text is correctly matched.
Both is illustrated by the following example.
Note that a single line such as Something is "green" and
another solid thing
is now correctly expanded.
[when]something is "{colour}"=Something(colour=="{colour}")
[when]another {state} thing=OtherThing(state=="{state})"
It is a good idea to avoid punctuation (other than quotes or apostrophes) in your DSL expressions as much as possible. The main reason is that punctuation is easy to forget for rule authors using your DSL. Another reason is that parentheses, the period and the question mark are magic characters, requiring escaping in the DSL definition.
In a DSL mapping, the braces "{" and "}" should only be used to enclose a variable definition or reference, resulting in a capture. If they should occur literally, either in the expression or within the replacement text on the right hand side, they must be escaped with a preceding backslash ("\"):
[then]do something= if (foo) \{ doSomething(); \}
If braces "{" and "}" should appear in the replacement string of a DSL definition, escape them with a backslash ('\'). |
# This is a comment to be ignored.
[when]There is a person with name of "{name}"=Person(name=="{name}")
[when]Person is at least {age} years old and lives in "{location}"=
Person(age >= {age}, location=="{location}")
[then]Log "{message}"=System.out.println("{message}");
[when]And = and
Given the above DSL examples, the following examples show the expansion of various DSLR snippets:
There is a person with name of "Kitty"
==> Person(name="Kitty")
Person is at least 42 years old and lives in "Atlanta"
==> Person(age >= 42, location="Atlanta")
Log "boo"
==> System.out.println("boo");
There is a person with name of "Bob" And Person is at least 30 years old and lives in "Utah"
==> Person(name="Bob") and Person(age >= 30, location="Utah")
Don’t forget that if you are capturing plain text from a DSL rule line and want to use it as a string literal in the expansion, you must provide the quotes on the right hand side of the mapping. |
You can chain DSL expressions together on one line, as long as it is clear to the parser where one ends and the next one begins and where the text representing a parameter ends. (Otherwise you risk getting all the text until the end of the line as a parameter value.) The DSL expressions are tried, one after the other, according to their order in the DSL definition file. After any match, all remaining DSL expressions are investigated, too.
The resulting DRL text may consist of more than one line.
Line ends are in the replacement text are written as \n
.
5.2.3. Adding Constraints to Facts
A common requirement when writing rule conditions is to be able to add an arbitrary combination of constraints to a pattern. Given that a fact type may have many fields, having to provide an individual DSL statement for each combination would be plain folly.
The DSL facility allows you to add constraints to a pattern by a simple convention: if your DSL expression starts with a hyphen (minus character, "-") it is assumed to be a field constraint and, consequently, is is added to the last pattern line preceding it.
For an example, lets take look at class Cheese
, with the following fields: type, price, age and country.
We can express some LHS condition in normal DRL like the following
Cheese(age < 5, price == 20, type=="stilton", country=="ch")
The DSL definitions given below result in three DSL phrases which may be used to create any combination of constraint involving these fields.
[when]There is a Cheese with=Cheese()
[when]- age is less than {age}=age<{age}
[when]- type is '{type}'=type=='{type}'
[when]- country equal to '{country}'=country=='{country}'
You can then write rules with conditions like the following:
There is a Cheese with
- age is less than 42
- type is 'stilton'
The parser will pick up a line beginning with "-" and add it as a constraint to the preceding pattern, inserting a comma when it is required. For the preceding example, the resulting DRL is:
Cheese(age<42, type=='stilton')
Combining all numeric fields with all relational operators (according to the DSL expression "age is less than…" in the preceding example) produces an unwieldy amount of DSL entries. But you can define DSL phrases for the various operators and even a generic expression that handles any field constraint, as shown below. (Notice that the expression definition contains a regular expression in addition to the variable name.)
[when][]is less than or equal to=<=
[when][]is less than=<
[when][]is greater than or equal to=>=
[when][]is greater than=>
[when][]is equal to===
[when][]equals===
[when][]There is a Cheese with=Cheese()
[when][]- {field:\w*} {operator} {value:\d*}={field} {operator} {value}
Given these DSL definitions, you can write rules with conditions such as:
There is a Cheese with
- age is less than 42
- rating is greater than 50
- type equals 'stilton'
In this specific case, a phrase such as "is less than" is replaced by <
, and then the line matches the last DSL entry.
This removes the hyphen, but the final result is still added as a constraint to the preceding pattern.
After processing all of the lines, the resulting DRL text is:
Cheese(age<42, rating > 50, type=='stilton')
The order of the entries in the DSL is important if separate DSL expressions are intended to match the same line, one after the other. |
5.2.4. Developing a DSL
A good way to get started is to write representative samples of the rules your application requires, and to test them as you develop. This will provide you with a stable framework of conditional elements and their constraints. Rules, both in DRL and in DSLR, refer to entities according to the data model representing the application data that should be subject to the reasoning process defined in rules. Notice that writing rules is generally easier if most of the data model’s types are facts.
Given an initial set of rules, it should be possible to identify recurring or similar code snippets and to mark variable parts as parameters. This provides reliable leads as to what might be a handy DSL entry. Also, make sure you have a full grasp of the jargon the domain experts are using, and base your DSL phrases on this vocabulary.
You may postpone implementation decisions concerning conditions and actions during this first design phase by leaving certain conditional elements and actions in their DRL form by prefixing a line with a greater sign (">"). (This is also handy for inserting debugging statements.)
During the next development phase, you should find that the DSL configuration stabilizes pretty quickly. New rules can be written by reusing the existing DSL definitions, or by adding a parameter to an existing condition or consequence entry.
Try to keep the number of DSL entries small. Using parameters lets you apply the same DSL sentence for similar rule patterns or constraints. But do not exaggerate: authors using the DSL should still be able to identify DSL phrases by some fixed text.
5.2.5. DSL and DSLR Reference
A DSL file is a text file in a line-oriented format. Its entries are used for transforming a DSLR file into a file according to DRL syntax.
-
A line starting with "" or "//" (with or without preceding white space) is treated as a comment. A comment line starting with "/" is scanned for words requesting a debug option, see below.
-
Any line starting with an opening bracket ("[") is assumed to be the first line of a DSL entry definition.
-
Any other line is appended to the preceding DSL entry definition, with the line end replaced by a space.
A DSL entry consists of the following four parts:
-
A scope definition, written as one of the keywords "when" or "condition", "then" or "consequence", "*" and "keyword", enclosed in brackets ("[" and "]"). This indicates whether the DSL entry is valid for the condition or the consequence of a rule, or both. A scope indication of "keyword" means that the entry has global significance, i.e., it is recognized anywhere in a DSLR file.
-
A type definition, written as a Java class name, enclosed in brackets. This part is optional unless the next part begins with an opening bracket. An empty pair of brackets is valid, too.
-
A DSL expression consists of a (Java) regular expression, with any number of embedded variable definitions, terminated by an equal sign ("="). A variable definition is enclosed in braces ("{" and "}"). It consists of a variable name and two optional attachments, separated by colons (":"). If there is one attachment, it is a regular expression for matching text that is to be assigned to the variable; if there are two attachments, the first one is a hint for the GUI editor and the second one the regular expression.
Note that all characters that are "magic" in regular expressions must be escaped with a preceding backslash ("\") if they should occur literally within the expression.
-
The remaining part of the line after the delimiting equal sign is the replacement text for any DSLR text matching the regular expression. It may contain variable references, i.e., a variable name enclosed in braces. Optionally, the variable name may be followed by an exclamation mark ("!") and a transformation function, see below.
Note that braces ("{" and "}") must be escaped with a preceding backslash ("\") if they should occur literally within the replacement string.
Debugging of DSL expansion can be turned on, selectively, by using a comment line starting with "#/" which may contain one or more words from the table presented below. The resulting output is written to standard output.
Word | Description |
---|---|
result |
Prints the resulting DRL text, with line numbers. |
steps |
Prints each expansion step of condition and consequence lines. |
keyword |
Dumps the internal representation of all DSL entries with scope "keyword". |
when |
Dumps the internal representation of all DSL entries with scope "when" or "*". |
then |
Dumps the internal representation of all DSL entries with scope "then" or "*". |
usage |
Displays a usage statistic of all DSL entries. |
Below are some sample DSL definitions, with comments describing the language features they illustrate.
# Comment: DSL examples
#/ debug: display result and usage
# keyword definition: replaces "regula" by "rule"
[keyword][]regula=rule
# conditional element: "T" or "t", "a" or "an", convert matched word
[when][][Tt]here is an? {entity:\w+}=
${entity!lc}: {entity!ucfirst} ()
# consequence statement: convert matched word, literal braces
[then][]update {entity:\w+}=modify( ${entity!lc} )\{ \}
The transformation of a DSLR file proceeds as follows:
-
The text is read into memory.
-
Each of the "keyword" entries is applied to the entire text. First, the regular expression from the keyword definition is modified by replacing white space sequences with a pattern matching any number of white space characters, and by replacing variable definitions with a capture made from the regular expression provided with the definition, or with the default (".*?"). Then, the DSLR text is searched exhaustively for occurrences of strings matching the modified regular expression. Substrings of a matching string corresponding to variable captures are extracted and replace variable references in the corresponding replacement text, and this text replaces the matching string in the DSLR text.
-
Sections of the DSLR text between "when" and "then", and "then" and "end", respectively, are located and processed in a uniform manner, line by line, as described below.
For a line, each DSL entry pertaining to the line’s section is taken in turn, in the order it appears in the DSL file. Its regular expression part is modified: white space is replaced by a pattern matching any number of white space characters; variable definitions with a regular expression are replaced by a capture with this regular expression, its default being ".*?". If the resulting regular expression matches all or part of the line, the matched part is replaced by the suitably modified replacement text.
Modification of the replacement text is done by replacing variable references with the text corresponding to the regular expression capture. This text may be modified according to the string transformation function given in the variable reference; see below for details.
If there is a variable reference naming a variable that is not defined in the same entry, the expander substitutes a value bound to a variable of that name, provided it was defined in one of the preceding lines of the current rule.
-
If a DSLR line in a condition is written with a leading hyphen, the expanded result is inserted into the last line, which should contain a pattern CE, i.e., a type name followed by a pair of parentheses. if this pair is empty, the expanded line (which should contain a valid constraint) is simply inserted, otherwise a comma (",") is inserted beforehand.
If a DSLR line in a consequence is written with a leading hyphen, the expanded result is inserted into the last line, which should contain a "modify" statement, ending in a pair of braces ("{" and "}"). If this pair is empty, the expanded line (which should contain a valid method call) is simply inserted, otherwise a comma (",") is inserted beforehand.
It is currently not possible to use a line with a leading hyphen to insert text into other conditional element forms (e.g., "accumulate") or it may only work for the first insertion (e.g., "eval"). |
All string transformation functions are described in the following table.
Name | Description |
---|---|
uc |
Converts all letters to upper case. |
lc |
Converts all letters to lower case. |
ucfirst |
Converts the first letter to upper case, and all other letters to lower case. |
num |
Extracts all digits and "-" from the string. If the last two digits in the original string are preceded by "." or ",", a decimal period is inserted in the corresponding position. |
a?b/c |
Compares the string with string a, and if they are equal, replaces it with b, otherwise with c. But c can be another triplet a, b, c, so that the entire structure is, in fact, a translation table. |
The following DSL examples show how to use string transformation functions.
# definitions for conditions
[when][]There is an? {entity}=${entity!lc}: {entity!ucfirst}()
[when][]- with an? {attr} greater than {amount}={attr} <= {amount!num}
[when][]- with a {what} {attr}={attr} {what!positive?>0/negative?%lt;0/zero?==0/ERROR}
A file containing a DSL definition has to be put under the resources folder or any of its subfolders like any other drools artifact.
It must have the extension .dsl
, or alternatively be marked with type ResourceType.DSL
.
when programmatically added to a KieFileSystem
.
For a file using DSL definition, the extension .dslr
should be used, while it can be added to a KieFileSystem
with type ResourceType.DSLR
.
For parsing and expanding a DSLR file the DSL configuration is read and supplied to the parser. Thus, the parser can "recognize" the DSL expressions and transform them into native rule language expressions.
6. Decision Model and Notation (DMN)
6.1. Decision Model and Notation (DMN)
Decision Model and Notation (DMN) is a standard established by the Object Management Group (OMG) for describing and modeling operational decisions. DMN defines an XML schema that enables DMN models to be shared between DMN-compliant platforms and across organizations so that business analysts and business rules developers can collaborate in designing and implementing DMN decision services. The DMN standard is similar to and can be used together with the Business Process Model and Notation (BPMN) standard for designing and modeling business processes.
For more information about the background and applications of DMN, see the OMG Decision Model and Notation specification.
6.1.1. DMN conformance levels
The DMN specification defines three incremental levels of conformance in a software implementation. A product that claims compliance at one level must also be compliant with any preceding levels. For example, a conformance level 3 implementation must also include the supported components in conformance levels 1 and 2. For the formal definitions of each conformance level, see the OMG Decision Model and Notation specification.
The following list summarizes the three DMN conformance levels:
- Conformance level 1
-
A DMN conformance level 1 implementation supports decision requirement diagrams (DRDs), decision logic, and decision tables, but decision models are not executable. Any language can be used to define the expressions, including natural, unstructured languages.
- Conformance level 2
-
A DMN conformance level 2 implementation includes the requirements in conformance level 1, and supports Simplified Friendly Enough Expression Language (S-FEEL) expressions and fully executable decision models.
- Conformance level 3
-
A DMN conformance level 3 implementation includes the requirements in conformance levels 1 and 2, and supports Friendly Enough Expression Language (FEEL) expressions, the full set of boxed expressions, and fully executable decision models.
Drools provides runtime support for DMN 1.1, 1.2, 1.3, and 1.4 models at conformance level 3, and design support for DMN 1.2 models at conformance level 3. You can design your DMN models directly in Business Central or with the Drools DMN modeler in VSCode, or import existing DMN models into your Drools projects for deployment and execution. Any DMN 1.1 and 1.3 models (do not contain DMN 1.3 features) that you import into Business Central, open in the DMN designer, and save are converted to DMN 1.2 models.
6.1.2. DMN decision requirements diagram (DRD) components
A decision requirements diagram (DRD) is a visual representation of your DMN model. A DRD can represent part or all of the overall decision requirements graph (DRG) for the DMN model. DRDs trace business decisions using decision nodes, business knowledge models, sources of business knowledge, input data, and decision services.
The following table summarizes the components in a DRD:
Component | Description | Notation | |
---|---|---|---|
Elements |
Decision |
Node where one or more input elements determine an output based on defined decision logic. |
![]() |
Business knowledge model |
Reusable function with one or more decision elements. Decisions that have the same logic but depend on different sub-input data or sub-decisions use business knowledge models to determine which procedure to follow. |
![]() |
|
Knowledge source |
External authorities, documents, committees, or policies that regulate a decision or business knowledge model. Knowledge sources are references to real-world factors rather than executable business rules. |
![]() |
|
Input data |
Information used in a decision node or a business knowledge model. Input data usually includes business-level concepts or objects relevant to the business, such as loan applicant data used in a lending strategy. |
![]() |
|
Decision service |
Top-level decision containing a set of reusable decisions published as a service for invocation. A decision service can be invoked from an external application or a BPMN business process. |
![]() |
|
Requirement connectors |
Information requirement |
Connection from an input data node or decision node to another decision node that requires the information. |
![]() |
Knowledge requirement |
Connection from a business knowledge model to a decision node or to another business knowledge model that invokes the decision logic. |
![]() |
|
Authority requirement |
Connection from an input data node or a decision node to a dependent knowledge source or from a knowledge source to a decision node, business knowledge model, or another knowledge source. |
![]() |
|
Artifacts |
Text annotation |
Explanatory note associated with an input data node, decision node, business knowledge model, or knowledge source. |
![]() |
Association |
Connection from an input data node, decision node, business knowledge model, or knowledge source to a text annotation. |
![]() |
The following table summarizes the permitted connectors between DRD elements:
Starts from | Connects to | Connection type | Example |
---|---|---|---|
Decision |
Decision |
Information requirement |
![]() |
Business knowledge model |
Decision |
Knowledge requirement |
![]() |
Business knowledge model |
![]() |
||
Decision service |
Decision |
Knowledge requirement |
![]() |
Business knowledge model |
![]() |
||
Input data |
Decision |
Information requirement |
![]() |
Knowledge source |
Authority requirement |
![]() |
|
Knowledge source |
Decision |
Authority requirement |
![]() |
Business knowledge model |
![]() |
||
Knowledge source |
![]() |
||
Decision |
Text annotation |
Association |
![]() |
Business knowledge model |
![]() |
||
Knowledge source |
![]() |
||
Input data |
![]() |
The following example DRD illustrates some of these DMN components in practice:

The following example DRD illustrates DMN components that are part of a reusable decision service:

In a DMN decision service node, the decision nodes in the bottom segment incorporate input data from outside of the decision service to arrive at a final decision in the top segment of the decision service node. The resulting top-level decisions from the decision service are then implemented in any subsequent decisions or business knowledge requirements of the DMN model. You can reuse DMN decision services in other DMN models to apply the same decision logic with different input data and different outgoing connections.
6.1.3. Rule expressions in FEEL
Friendly Enough Expression Language (FEEL) is an expression language defined by the Object Management Group (OMG) DMN specification. FEEL expressions define the logic of a decision in a DMN model. FEEL is designed to facilitate both decision modeling and execution by assigning semantics to the decision model constructs. FEEL expressions in decision requirements diagrams (DRDs) occupy table cells in boxed expressions for decision nodes and business knowledge models.
For more information about FEEL in DMN, see the OMG Decision Model and Notation specification.
6.1.3.1. Data types in FEEL
Friendly Enough Expression Language (FEEL) supports the following data types:
-
Numbers
-
Strings
-
Boolean values
-
Dates
-
Time
-
Date and time
-
Days and time duration
-
Years and months duration
-
Functions
-
Contexts
-
Ranges (or intervals)
-
Lists
The DMN specification currently does not provide an explicit way of declaring a variable as a function , context , range , or list , but Drools extends the DMN built-in types to support variables of these types.
|
The following list describes each data type:
- Numbers
-
Numbers in FEEL are based on the IEEE 754-2008 Decimal 128 format, with 34 digits of precision. Internally, numbers are represented in Java as
BigDecimals
withMathContext DECIMAL128
. FEEL supports only one number data type, so the same type is used to represent both integers and floating point numbers.FEEL numbers use a dot (
.
) as a decimal separator. FEEL does not support-INF
,+INF
, orNaN
. FEEL usesnull
to represent invalid numbers.Drools extends the DMN specification and supports additional number notations:
-
Scientific: You can use scientific notation with the suffix
e<exp>
orE<exp>
. For example,1.2e3
is the same as writing the expression1.2*10**3
, but is a literal instead of an expression. -
Hexadecimal: You can use hexadecimal numbers with the prefix
0x
. For example,0xff
is the same as the decimal number255
. Both uppercase and lowercase letters are supported. For example,0XFF
is the same as0xff
. -
Type suffixes: You can use the type suffixes
f
,F
,d
,D
,l
, andL
. These suffixes are ignored.
-
- Strings
-
Strings in FEEL are any sequence of characters delimited by double quotation marks.
Example"John Doe"
- Boolean values
-
FEEL uses three-valued boolean logic, so a boolean logic expression may have values
true
,false
, ornull
. - Dates
-
Date literals are not supported in FEEL, but you can use the built-in
date()
function to construct date values. Date strings in FEEL follow the format defined in the XML Schema Part 2: Datatypes document. The format is"YYYY-MM-DD"
whereYYYY
is the year with four digits,MM
is the number of the month with two digits, andDD
is the number of the day.Example:
date( "2017-06-23" )
Date objects have time equal to
"00:00:00"
, which is midnight. The dates are considered to be local, without a timezone. - Time
-
Time literals are not supported in FEEL, but you can use the built-in
time()
function to construct time values. Time strings in FEEL follow the format defined in the XML Schema Part 2: Datatypes document. The format is"hh:mm:ss[.uuu][(+-)hh:mm]"
wherehh
is the hour of the day (from00
to23
),mm
is the minutes in the hour, andss
is the number of seconds in the minute. Optionally, the string may define the number of milliseconds (uuu
) within the second and contain a positive (+
) or negative (-
) offset from UTC time to define its timezone. Instead of using an offset, you can use the letterz
to represent the UTC time, which is the same as an offset of-00:00
. If no offset is defined, the time is considered to be local.Examples:
time( "04:25:12" ) time( "14:10:00+02:00" ) time( "22:35:40.345-05:00" ) time( "15:00:30z" )
Time values that define an offset or a timezone cannot be compared to local times that do not define an offset or a timezone.
- Date and time
-
Date and time literals are not supported in FEEL, but you can use the built-in
date and time()
function to construct date and time values. Date and time strings in FEEL follow the format defined in the XML Schema Part 2: Datatypes document. The format is"<date>T<time>"
, where<date>
and<time>
follow the prescribed XML schema formatting, conjoined byT
.Examples:
date and time( "2017-10-22T23:59:00" ) date and time( "2017-06-13T14:10:00+02:00" ) date and time( "2017-02-05T22:35:40.345-05:00" ) date and time( "2017-06-13T15:00:30z" )
Date and time values that define an offset or a timezone cannot be compared to local date and time values that do not define an offset or a timezone.
If your implementation of the DMN specification does not support spaces in the XML schema, use the keyword dateTime
as a synonym ofdate and time
. - Days and time duration
-
Days and time duration literals are not supported in FEEL, but you can use the built-in
duration()
function to construct days and time duration values. Days and time duration strings in FEEL follow the format defined in the XML Schema Part 2: Datatypes document, but are restricted to only days, hours, minutes and seconds. Months and years are not supported.Examples:
duration( "P1DT23H12M30S" ) duration( "P23D" ) duration( "PT12H" ) duration( "PT35M" )
If your implementation of the DMN specification does not support spaces in the XML schema, use the keyword dayTimeDuration
as a synonym ofdays and time duration
. - Years and months duration
-
Years and months duration literals are not supported in FEEL, but you can use the built-in
duration()
function to construct days and time duration values. Years and months duration strings in FEEL follow the format defined in the XML Schema Part 2: Datatypes document, but are restricted to only years and months. Days, hours, minutes, or seconds are not supported.Examples:
duration( "P3Y5M" ) duration( "P2Y" ) duration( "P10M" ) duration( "P25M" )
If your implementation of the DMN specification does not support spaces in the XML schema, use the keyword yearMonthDuration
as a synonym ofyears and months duration
. - Functions
-
FEEL has
function
literals (or anonymous functions) that you can use to create functions. The DMN specification currently does not provide an explicit way of declaring a variable as afunction
, but Drools extends the DMN built-in types to support variables of functions.Example:
function(a, b) a + b
In this example, the FEEL expression creates a function that adds the parameters
a
andb
and returns the result. - Contexts
-
FEEL has
context
literals that you can use to create contexts. Acontext
in FEEL is a list of key and value pairs, similar to maps in languages like Java. The DMN specification currently does not provide an explicit way of declaring a variable as acontext
, but Drools extends the DMN built-in types to support variables of contexts.Example:
{ x : 5, y : 3 }
In this example, the expression creates a context with two entries,
x
andy
, representing a coordinate in a chart.In DMN 1.2, another way to create contexts is to create an item definition that contains the list of keys as attributes, and then declare the variable as having that item definition type.
The Drools DMN API supports DMN
ItemDefinition
structural types in aDMNContext
represented in two ways:-
User-defined Java type: Must be a valid JavaBeans object defining properties and getters for each of the components in the DMN
ItemDefinition
. If necessary, you can also use the@FEELProperty
annotation for those getters representing a component name which would result in an invalid Java identifier. -
java.util.Map
interface: The map needs to define the appropriate entries, with the keys corresponding to the component name in the DMNItemDefinition
.
-
- Ranges (or intervals)
-
FEEL has
range
literals that you can use to create ranges or intervals. Arange
in FEEL is a value that defines a lower and an upper bound, where either can be open or closed. The DMN specification currently does not provide an explicit way of declaring a variable as arange
, but Drools extends the DMN built-in types to support variables of ranges.The syntax of a range is defined in the following formats:
range := interval_start endpoint '..' endpoint interval_end interval_start := open_start | closed_start open_start := '(' | ']' closed_start := '[' interval_end := open_end | closed_end open_end := ')' | '[' closed_end := ']' endpoint := expression
The expression for the endpoint must return a comparable value, and the lower bound endpoint must be lower than the upper bound endpoint.
For example, the following literal expression defines an interval between
1
and10
, including the boundaries (a closed interval on both endpoints):[ 1 .. 10 ]
The following literal expression defines an interval between 1 hour and 12 hours, including the lower boundary (a closed interval), but excluding the upper boundary (an open interval):
[ duration("PT1H") .. duration("PT12H") )
You can use ranges in decision tables to test for ranges of values, or use ranges in simple literal expressions. For example, the following literal expression returns
true
if the value of a variablex
is between0
and100
:x in [ 1 .. 100 ]
- Lists
-
FEEL has
list
literals that you can use to create lists of items. Alist
in FEEL is represented by a comma-separated list of values enclosed in square brackets. The DMN specification currently does not provide an explicit way of declaring a variable as alist
, but Drools extends the DMN built-in types to support variables of lists.Example:
[ 2, 3, 4, 5 ]
All lists in FEEL contain elements of the same type and are immutable. Elements in a list can be accessed by index, where the first element is
1
. Negative indexes can access elements starting from the end of the list so that-1
is the last element.For example, the following expression returns the second element of a list
x
:x[2]
The following expression returns the second-to-last element of a list
x
:x[-2]
Elements in a list can also be counted by the function
count
, which uses the list of elements as the parameter.For example, the following expression returns
4
:count([ 2, 3, 4, 5 ])
6.1.3.2. Built-in functions in FEEL
To promote interoperability with other platforms and systems, Friendly Enough Expression Language (FEEL) includes a library of built-in functions. The built-in FEEL functions are implemented in the Drools Decision Model and Notation (DMN) engine so that you can use the functions in your DMN decision services.
The following sections describe each built-in FEEL function, listed in the format NAME( PARAMETERS )
. For more information about FEEL functions in DMN, see the OMG Decision Model and Notation specification.
Conversion functions
The following functions support conversion between values of different types. Some of these functions use specific string formats, such as the following examples:
-
date string
: Follows the format defined in the XML Schema Part 2: Datatypes document, such as2020-06-01
-
time string
: Follows one of the following formats:-
Format defined in the XML Schema Part 2: Datatypes document, such as
23:59:00z
-
Format for a local time defined by ISO 8601 followed by
@
and an IANA Timezone, such as00:01:00@Etc/UTC
-
-
date time string
: Follows the format of adate string
followed byT
and atime string
, such as2012-12-25T11:00:00Z
-
duration string
: Follows the format ofdays and time duration
andyears and months duration
defined in the XQuery 1.0 and XPath 2.0 Data Model, such asP1Y2M
- date( from ) - using date
-
Converts
from
to adate
value.Table 20. Parameters Parameter Type Format from
string
date string
Exampledate( "2012-12-25" ) - date( "2012-12-24" ) = duration( "P1D" )
- date( from ) - using date and time
-
Converts
from
to adate
value and sets time components to null.Table 21. Parameters Parameter Type from
date and time
Exampledate(date and time( "2012-12-25T11:00:00Z" )) = date( "2012-12-25" )
- date( year, month, day )
-
Produces a
date
from the specified year, month, and day values.Table 22. Parameters Parameter Type year
number
month
number
day
number
Exampledate( 2012, 12, 25 ) = date( "2012-12-25" )
- date and time( date, time )
-
Produces a
date and time
from the specified date and ignores any time components and the specified time.Table 23. Parameters Parameter Type date
date
ordate and time
time
time
Exampledate and time ( "2012-12-24T23:59:00" ) = date and time(date( "2012-12-24" ), time( "23:59:00" ))
- date and time( from )
-
Produces a
date and time
from the specified string.Table 24. Parameters Parameter Type Format from
string
date time string
Exampledate and time( "2012-12-24T23:59:00" ) + duration( "PT1M" ) = date and time( "2012-12-25T00:00:00" )
- time( from )
-
Produces a
time
from the specified string.Table 25. Parameters Parameter Type Format from
string
time string
Exampletime( "23:59:00z" ) + duration( "PT2M" ) = time( "00:01:00@Etc/UTC" )
- time( from )
-
Produces a
time
from the specified parameter and ignores any date components.Table 26. Parameters Parameter Type from
time
ordate and time
Exampletime(date and time( "2012-12-25T11:00:00Z" )) = time( "11:00:00Z" )
- time( hour, minute, second, offset? )
-
Produces a
time
from the specified hour, minute, and second component values.Table 27. Parameters Parameter Type hour
number
minute
number
second
number
offset
(Optional)days and time duration
or nullExampletime( "23:59:00z" ) = time(23, 59, 0, duration( "PT0H" ))
- number( from, grouping separator, decimal separator )
-
Converts
from
to anumber
using the specified separators.Table 28. Parameters Parameter Type from
string
representing a valid numbergrouping separator
Space ( ), comma (
,
), period (.
), or nulldecimal separator
Same types as
grouping separator
, but the values cannot matchExamplenumber( "1 000,0", " ", "," ) = number( "1,000.0", ",", "." )
- string( from )
-
Provides a string representation of the specified parameter.
Table 29. Parameters Parameter Type from
Non-null value
Examplesstring( 1.1 ) = "1.1" string( null ) = null
- duration( from )
-
Converts
from
to adays and time duration
value oryears and months duration
value.Table 30. Parameters Parameter Type Format from
string
duration string
Examplesdate and time( "2012-12-24T23:59:00" ) - date and time( "2012-12-22T03:45:00" ) = duration( "P2DT20H14M" ) duration( "P2Y2M" ) = duration( "P26M" )
- years and months duration( from, to )
-
Calculates the
years and months duration
between the two specified parameters.Table 31. Parameters Parameter Type from
date
ordate and time
to
date
ordate and time
Exampleyears and months duration( date( "2011-12-22" ), date( "2013-08-24" ) ) = duration( "P1Y8M" )
Boolean functions
The following functions support Boolean operations.
- not( negand )
-
Performs the logical negation of the
negand
operand.Table 32. Parameters Parameter Type negand
boolean
Examplesnot( true ) = false not( null ) = null
String functions
The following functions support string operations.
In FEEL, Unicode characters are counted based on their code points. |
- substring( string, start position, length? )
-
Returns the substring from the start position for the specified length. The first character is at position value
1
.Table 33. Parameters Parameter Type string
string
start position
number
length
(Optional)number
Examplessubstring( "testing",3 ) = "sting" substring( "testing",3,3 ) = "sti" substring( "testing", -2, 1 ) = "n" substring( "\U01F40Eab", 2 ) = "ab"
In FEEL, the string literal "\U01F40Eab"
is the🐎ab
string (horse symbol followed bya
andb
).
- string length( string )
-
Calculates the length of the specified string.
Table 34. Parameters Parameter Type string
string
Examplesstring length( "tes" ) = 3 string length( "\U01F40Eab" ) = 3
- upper case( string )
-
Produces an uppercase version of the specified string.
Table 35. Parameters Parameter Type string
string
Exampleupper case( "aBc4" ) = "ABC4"
- lower case( string )
-
Produces a lowercase version of the specified string.
Table 36. Parameters Parameter Type string
string
Examplelower case( "aBc4" ) = "abc4"
- substring before( string, match )
-
Calculates the substring before the match.
Table 37. Parameters Parameter Type string
string
match
string
Examplessubstring before( "testing", "ing" ) = "test" substring before( "testing", "xyz" ) = ""
- substring after( string, match )
-
Calculates the substring after the match.
Table 38. Parameters Parameter Type string
string
match
string
Examplessubstring after( "testing", "test" ) = "ing" substring after( "", "a" ) = ""
- replace( input, pattern, replacement, flags? )
-
Calculates the regular expression replacement.
Table 39. Parameters Parameter Type input
string
pattern
string
replacement
string
flags
(Optional)string
This function uses regular expression parameters as defined in XQuery 1.0 and XPath 2.0 Functions and Operators. Examplereplace( "banana", "a", "o" ) = "bonono" replace( "abcd", "(ab)|(a)", "[1=$1][2=$2]" ) = "[1=ab][2=]cd"
- contains( string, match )
-
Returns
true
if the string contains the match.Table 40. Parameters Parameter Type string
string
match
string
Examplecontains( "testing", "to" ) = false
- starts with( string, match )
-
Returns
true
if the string starts with the matchTable 41. Parameters Parameter Type string
string
match
string
Examplestarts with( "testing", "te" ) = true
- ends with( string, match )
-
Returns
true
if the string ends with the match.Table 42. Parameters Parameter Type string
string
match
string
Exampleends with( "testing", "g" ) = true
- matches( input, pattern, flags? )
-
Returns
true
if the input matches the regular expression.Table 43. Parameters Parameter Type input
string
pattern
string
flags
(Optional)string
This function uses regular expression parameters as defined in XQuery 1.0 and XPath 2.0 Functions and Operators. Examplematches( "teeesting", "^te*sting" ) = true
- split( string, delimiter )
-
Returns a list of the original string and splits it at the delimiter regular expression pattern.
Table 44. Parameters Parameter Type string
string
delimiter
string
for a regular expression patternThis function uses regular expression parameters as defined in XQuery 1.0 and XPath 2.0 Functions and Operators. Examplessplit( "John Doe", "\\s" ) = ["John", "Doe"] split( "a;b;c;;", ";" ) = ["a","b","c","",""]
- string join( list, delimiter )
-
Returns a string which is composed by joining all the string elements from the list parameter, separated by the delimiter. The
delimiter
can be an empty string. Null elements in the list parameter are ignored. Iflist
is empty, the result is the empty string. Ifdelimiter
is null, the string elements are joined without a separator.Table 45. Parameters Parameter Type list
list
ofstring
delimiter
string
Examplesstring join(["a","b","c"], "_and_") = "a_and_b_and_c" string join(["a","b","c"], "") = "abc" string join(["a","b","c"], null) = "abc" string join(["a"], "X") = "a" string join(["a",null,"c"], "X") = "aXc" string join([], "X") = ""
- string join( list )
-
Returns a string which is composed by joining all the string elements from the list parameter. Null elements in the
list
parameter are ignored. Iflist
is empty, the result is the empty string.Table 46. Parameters Parameter Type list
list
ofstring
Examplesstring join(["a","b","c"]) = "abc" string join(["a",null,"c"]) = "ac" string join([]) = ""
List functions
The following functions support list operations.
In FEEL, the index of the first element in a list is 1 . The index of the last element in a list can be identified as -1 .
|
- list contains( list, element )
-
Returns
true
if the list contains the element.Table 47. Parameters Parameter Type list
list
element
Any type, including null
Examplelist contains( [1,2,3], 2 ) = true
- count( list )
-
Counts the elements in the list.
Table 48. Parameters Parameter Type list
list
Examplescount( [1,2,3] ) = 3 count( [] ) = 0 count( [1,[2,3]] ) = 2
- min( list )
-
Returns the minimum comparable element in the list.
Table 49. Parameters Parameter Type list
list
Alternative signaturemin( e1, e2, ..., eN )
Examplesmin( [1,2,3] ) = 1 min( 1 ) = 1 min( [1] ) = 1
- max( list )
-
Returns the maximum comparable element in the list.
Table 50. Parameters Parameter Type list
list
Alternative signaturemax( e1, e2, ..., eN )
Examplesmax( 1,2,3 ) = 3 max( [] ) = null
- sum( list )
-
Returns the sum of the numbers in the list.
Table 51. Parameters Parameter Type list
list
ofnumber
elementsAlternative signaturesum( n1, n2, ..., nN )
Examplessum( [1,2,3] ) = 6 sum( 1,2,3 ) = 6 sum( 1 ) = 1 sum( [] ) = null
- mean( list )
-
Calculates the average (arithmetic mean) of the elements in the list.
Table 52. Parameters Parameter Type list
list
ofnumber
elementsAlternative signaturemean( n1, n2, ..., nN )
Examplesmean( [1,2,3] ) = 2 mean( 1,2,3 ) = 2 mean( 1 ) = 1 mean( [] ) = null
- all( list )
-
Returns
true
if all elements in the list are true.Table 53. Parameters Parameter Type list
list
ofboolean
elementsAlternative signatureall( b1, b2, ..., bN )
Examplesall( [false,null,true] ) = false all( true ) = true all( [true] ) = true all( [] ) = true all( 0 ) = null
- any( list )
-
Returns
true
if any element in the list is true.Table 54. Parameters Parameter Type list
list
ofboolean
elementsAlternative signatureany( b1, b2, ..., bN )
Examplesany( [false,null,true] ) = true any( false ) = false any( [] ) = false any( 0 ) = null
- sublist( list, start position, length? )
-
Returns the sublist from the start position, limited to the length elements.
Table 55. Parameters Parameter Type list
list
start position
number
length
(Optional)number
Examplesublist( [4,5,6], 1, 2 ) = [4,5]
- append( list, item )
-
Creates a list that is appended to the item or items.
Table 56. Parameters Parameter Type list
list
item
Any type
Exampleappend( [1], 2, 3 ) = [1,2,3]
- concatenate( list )
-
Creates a list that is the result of the concatenated lists.
Table 57. Parameters Parameter Type list
list
Exampleconcatenate( [1,2],[3] ) = [1,2,3]
- insert before( list, position, newItem )
-
Creates a list with the
newItem
inserted at the specified position.Table 58. Parameters Parameter Type list
list
position
number
newItem
Any type
Exampleinsert before( [1,3],1,2 ) = [2,1,3]
- remove( list, position )
-
Creates a list with the removed element excluded from the specified position.
Table 59. Parameters Parameter Type list
list
position
number
Exampleremove( [1,2,3], 2 ) = [1,3]
- reverse( list )
-
Returns a reversed list.
Table 60. Parameters Parameter Type list
list
Examplereverse( [1,2,3] ) = [3,2,1]
- index of( list, match )
-
Returns indexes matching the element.
Parameters-
list
of typelist
-
match
of any type
Table 61. Parameters Parameter Type list
list
match
Any type
Exampleindex of( [1,2,3,2],2 ) = [2,4]
-
- union( list )
-
Returns a list of all the elements from multiple lists and excludes duplicates.
Table 62. Parameters Parameter Type list
list
Exampleunion( [1,2],[2,3] ) = [1,2,3]
- distinct values( list )
-
Returns a list of elements from a single list and excludes duplicates.
Table 63. Parameters Parameter Type list
list
Exampledistinct values( [1,2,3,2,1] ) = [1,2,3]
- flatten( list )
-
Returns a flattened list.
Table 64. Parameters Parameter Type list
list
Exampleflatten( [[1,2],[[3]], 4] ) = [1,2,3,4]
- product( list )
-
Returns the product of the numbers in the list.
Table 65. Parameters Parameter Type list
list
ofnumber
elementsAlternative signatureproduct( n1, n2, ..., nN )
Examplesproduct( [2, 3, 4] ) = 24 product( [] ) = null product( 2, 3, 4 ) = 24
- median( list )
-
Returns the median of the numbers in the list. If the number of elements is odd, the result is the middle element. If the number of elements is even, the result is the average of the two middle elements.
Table 66. Parameters Parameter Type list
list
ofnumber
elementsAlternative signaturemedian( n1, n2, ..., nN )
Examplesmedian( 8, 2, 5, 3, 4 ) = 4 median( [6, 1, 2, 3] ) = 2.5 median( [ ] ) = null
- stddev( list )
-
Returns the standard deviation of the numbers in the list.
Table 67. Parameters Parameter Type list
list
ofnumber
elementsAlternative signaturestddev( n1, n2, ..., nN )
Examplesstddev( 2, 4, 7, 5 ) = 2.081665999466132735282297706979931 stddev( [47] ) = null stddev( 47 ) = null stddev( [ ] ) = null
- mode( list )
-
Returns the mode of the numbers in the list. If multiple elements are returned, the numbers are sorted in ascending order.
Table 68. Parameters Parameter Type list
list
ofnumber
elementsAlternative signaturemode( n1, n2, ..., nN )
Examplesmode( 6, 3, 9, 6, 6 ) = [6] mode( [6, 1, 9, 6, 1] ) = [1, 6] mode( [ ] ) = [ ]
Loop statements can transform lists or verify if some elements satisfy a specific condition:
- for in (list)
-
Iterates the elements of the list.
Table 69. Parameters Parameter Type list
list
ofAny
elementsExamplesfor i in [1, 2, 3] return i * i = [1, 4, 9] for i in [1,2,3], j in [1,2,3] return i*j = [1, 2, 3, 2, 4, 6, 3, 6, 9]
- some in (list) satisfies (condition)
-
Returns to single boolean value (true or false), if any element in the list satisfies the condition.
Table 70. Parameters Parameter Type list
list
ofAny
elementscondition
boolean expression evaluated to true or false
Examplessome i in [1, 2, 3] satisfies i > 2 = true some i in [1, 2, 3] satisfies i > 4 = false
- every in (list) satisfies (condition)
-
Returns to single boolean value (true or false), if every element in the list satisfies the condition.
Table 71. Parameters Parameter Type list
list
ofAny
elementscondition
boolean expression evaluated to true or false
Examplesevery i in [1, 2, 3] satisfies i > 1 = false every i in [1, 2, 3] satisfies i > 0 = true
Numeric functions
The following functions support number operations.
- decimal( n, scale )
-
Returns a number with the specified scale.
Table 72. Parameters Parameter Type n
number
scale
number
in the range[−6111..6176]
This function is implemented to be consistent with the FEEL:number
definition for rounding decimal numbers to the nearest even decimal number.Examplesdecimal( 1/3, 2 ) = .33 decimal( 1.5, 0 ) = 2 decimal( 2.5, 0 ) = 2 decimal( 1.035, 2 ) = 1.04 decimal( 1.045, 2 ) = 1.04 decimal( 1.055, 2 ) = 1.06 decimal( 1.065, 2 ) = 1.06
- floor( n )
-
Returns
n
with given scale and rounding mode flooring. If at least one ofn
orscale
is null, the result is null.Table 73. Parameters Parameter Type n
number
Alternative signaturefloor( n, scale )
Examplesfloor( 1.5 ) = 1 floor( -1.56, 1 ) = -1.6 floor( -1.5 ) = -2
- ceiling( n )
-
Returns
n
with given scale and rounding mode ceiling. If at least one ofn
orscale
is null, the result is null.Table 74. Parameters Parameter Type n
number
Alternative signatureceiling( n, scale )
Examplesceiling( 1.5 ) = 2 ceiling( -1.56, 1 ) = -1.5 ceiling( -1.5 ) = -1
- round up( n, scale )
-
Returns
n
with given scale and rounding mode round up. If at least one ofn
orscale
is null, the result is null.Table 75. Parameters Parameter Type n
number
scale
number
Examplesround up( 5.5, 0 ) = 6 round up( -5.5, 0 ) = -6 round up( 1.121, 2 ) = 1.13 round up( -1.126, 2 ) = -1.13
- round down( n, scale )
-
Returns
n
with given scale and rounding mode round down. If at least one ofn
orscale
is null, the result is null.Table 76. Parameters Parameter Type n
number
scale
number
Examplesround down( 5.5, 0 ) = 5 round down( -5.5, 0 ) = -5 round down( 1.121, 2 ) = 1.12 round down( -1.126, 2 ) = -1.12
- round half up( n, scale )
-
Returns
n
with given scale and rounding mode round half up. If at least one ofn
orscale
is null, the result is null.Table 77. Parameters Parameter Type n
number
scale
number
Examplesround half up( 5.5, 0 ) = 6 round half up( -5.5, 0 ) = -6 round half up( 1.121, 2 ) = 1.12 round half up( -1.126, 2 ) = -1.13
- round half down( n, scale )
-
Returns
n
with given scale and rounding mode round half down. If at least one ofn
orscale
is null, the result is null.Table 78. Parameters Parameter Type n
number
scale
number
Examplesround half down( 5.5, 0 ) = 5 round half down( -5.5, 0 ) = -5 round half down( 1.121, 2 ) = 1.12 round half down( -1.126, 2 ) = -1.13
- abs( n )
-
Returns the absolute value.
Table 79. Parameters Parameter Type n
number
,days and time duration
, oryears and months duration
Examplesabs( 10 ) = 10 abs( -10 ) = 10 abs( @"PT5H" ) = @"PT5H" abs( @"-PT5H" ) = @"PT5H"
- modulo( dividend, divisor )
-
Returns the remainder of the division of the dividend by the divisor. If either the dividend or divisor is negative, the result is of the same sign as the divisor.
This function is also expressed as modulo(dividend, divisor) = dividend - divisor*floor(dividen d/divisor)
.Table 80. Parameters Parameter Type dividend
number
divisor
number
Examplesmodulo( 12, 5 ) = 2 modulo( -12,5 )= 3 modulo( 12,-5 )= -3 modulo( -12,-5 )= -2 modulo( 10.1, 4.5 )= 1.1 modulo( -10.1, 4.5 )= 3.4 modulo( 10.1, -4.5 )= -3.4 modulo( -10.1, -4.5 )= -1.1
- sqrt( number )
-
Returns the square root of the specified number.
Table 81. Parameters Parameter Type n
number
Examplesqrt( 16 ) = 4
- log( number )
-
Returns the logarithm of the specified number.
Table 82. Parameters Parameter Type n
number
Exampledecimal( log( 10 ), 2 ) = 2.30
- exp( number )
-
Returns Euler’s number
e
raised to the power of the specified number.Table 83. Parameters Parameter Type n
number
Exampledecimal( exp( 5 ), 2 ) = 148.41
- odd( number )
-
Returns
true
if the specified number is odd.Table 84. Parameters Parameter Type n
number
Examplesodd( 5 ) = true odd( 2 ) = false
- even( number )
-
Returns
true
if the specified number is even.Table 85. Parameters Parameter Type n
number
Exampleseven( 5 ) = false even ( 2 ) = true
Date and time functions
The following functions support date and time operations.
- is( value1, value2 )
-
Returns
true
if both values are the same element in the FEEL semantic domain.Table 86. Parameters Parameter Type value1
Any type
value2
Any type
Examplesis( date( "2012-12-25" ), time( "23:00:50" ) ) = false is( date( "2012-12-25" ), date( "2012-12-25" ) ) = true is( time( "23:00:50z" ), time( "23:00:50" ) ) = false is( time( "23:00:50z" ), time( "23:00:50+00:00" ) ) = true
Range functions
The following functions support temporal ordering operations to establish relationships between single scalar values and ranges of such values. These functions are similar to the components in the Health Level Seven (HL7) International Clinical Quality Language (CQL) 1.4 syntax.
- before( )
-
Returns
true
when an elementA
is before an elementB
and when the relevant requirements for evaluating totrue
are also met.Signatures-
before( point1 point2 )
-
before( point range )
-
before( range point )
-
before( range1,range2 )
Requirements for evaluating totrue
-
point1 < point2
-
point < range.start or ( point = range.start and not(range.start included) )
-
range.end < point or ( range.end = point and not(range.end included) )
-
range1.end < range2.start or (( not(range1.end included) or not(range2.start included) ) and range1.end = range2.start )
Examplesbefore( 1, 10 ) = true before( 10, 1 ) = false before( 1, [1..10] ) = false before( 1, (1..10] ) = true before( 1, [5..10] ) = true before( [1..10], 10 ) = false before( [1..10), 10 ) = true before( [1..10], 15 ) = true before( [1..10], [15..20] ) = true before( [1..10], [10..20] ) = false before( [1..10), [10..20] ) = true before( [1..10], (10..20] ) = true
-
- after( )
-
Returns
true
when an elementA
is after an elementB
and when the relevant requirements for evaluating totrue
are also met.Signatures-
after( point1 point2 )
-
after( point range )
-
after( range, point )
-
after( range1 range2 )
Requirements for evaluating totrue
-
point1 > point2
-
point > range.end or ( point = range.end and not(range.end included) )
-
range.start > point or ( range.start = point and not(range.start included) )
-
range1.start > range2.end or (( not(range1.start included) or not(range2.end included) ) and range1.start = range2.end )
Examplesafter( 10, 5 ) = true after( 5, 10 ) = false after( 12, [1..10] ) = true after( 10, [1..10) ) = true after( 10, [1..10] ) = false after( [11..20], 12 ) = false after( [11..20], 10 ) = true after( (11..20], 11 ) = true after( [11..20], 11 ) = false after( [11..20], [1..10] ) = true after( [1..10], [11..20] ) = false after( [11..20], [1..11) ) = true after( (11..20], [1..11] ) = true
-
- meets( )
-
Returns
true
when an elementA
meets an elementB
and when the relevant requirements for evaluating totrue
are also met.Signatures-
meets( range1, range2 )
Requirements for evaluating totrue
-
range1.end included and range2.start included and range1.end = range2.start
Examplesmeets( [1..5], [5..10] ) = true meets( [1..5), [5..10] ) = false meets( [1..5], (5..10] ) = false meets( [1..5], [6..10] ) = false
-
- met by( )
-
Returns
true
when an elementA
is met by an elementB
and when the relevant requirements for evaluating totrue
are also met.Signatures-
met by( range1, range2 )
Requirements for evaluating totrue
-
range1.start included and range2.end included and range1.start = range2.end
Examplesmet by( [5..10], [1..5] ) = true met by( [5..10], [1..5) ) = false met by( (5..10], [1..5] ) = false met by( [6..10], [1..5] ) = false
-
- overlaps( )
-
Returns
true
when an elementA
overlaps an elementB
and when the relevant requirements for evaluating totrue
are also met.Signatures-
overlaps( range1, range2 )
Requirements for evaluating totrue
-
( range1.end > range2.start or (range1.end = range2.start and range1.end included and range2.end included) ) and ( range1.start < range2.end or (range1.start = range2.end and range1.start included and range2.end included) )
Examplesoverlaps( [1..5], [3..8] ) = true overlaps( [3..8], [1..5] ) = true overlaps( [1..8], [3..5] ) = true overlaps( [3..5], [1..8] ) = true overlaps( [1..5], [6..8] ) = false overlaps( [6..8], [1..5] ) = false overlaps( [1..5], [5..8] ) = true overlaps( [1..5], (5..8] ) = false overlaps( [1..5), [5..8] ) = false overlaps( [1..5), (5..8] ) = false overlaps( [5..8], [1..5] ) = true overlaps( (5..8], [1..5] ) = false overlaps( [5..8], [1..5) ) = false overlaps( (5..8], [1..5) ) = false
-
- overlaps before( )
-
Returns
true
when an elementA
overlaps before an elementB
and when the relevant requirements for evaluating totrue
are also met.Signatures-
overlaps before( range1 range2 )
Requirements for evaluating totrue
-
( range1.start < range2.start or (range1.start = range2.start and range1.start included and not(range2.start included)) ) and ( range1.end > range2.start or (range1.end = range2.start and range1.end included and range2.start included) ) and ( range1.end < range2.end or (range1.end = range2.end and (not(range1.end included) or range2.end included )) )
Examplesoverlaps before( [1..5], [3..8] ) = true overlaps before( [1..5], [6..8] ) = false overlaps before( [1..5], [5..8] ) = true overlaps before( [1..5], (5..8] ) = false overlaps before( [1..5), [5..8] ) = false overlaps before( [1..5), (1..5] ) = true overlaps before( [1..5], (1..5] ) = true overlaps before( [1..5), [1..5] ) = false overlaps before( [1..5], [1..5] ) = false
-
- overlaps after( )
-
Returns
true
when an elementA
overlaps after an elementB
and when the relevant requirements for evaluating totrue
are also met.Signatures-
overlaps after( range1 range2 )
Requirements for evaluating totrue
-
( range2.start < range1.start or (range2.start = range1.start and range2.start included and not( range1.start included)) ) and ( range2.end > range1.start or (range2.end = range1.start and range2.end included and range1.start included) ) and ( range2.end < range1.end or (range2.end = range1.end and (not(range2.end included) or range1.end included)) )
Examplesoverlaps after( [3..8], [1..5] )= true overlaps after( [6..8], [1..5] )= false overlaps after( [5..8], [1..5] )= true overlaps after( (5..8], [1..5] )= false overlaps after( [5..8], [1..5) )= false overlaps after( (1..5], [1..5) )= true overlaps after( (1..5], [1..5] )= true overlaps after( [1..5], [1..5) )= false overlaps after( [1..5], [1..5] )= false overlaps after( (1..5), [1..5] )= false overlaps after( (1..5], [1..6] )= false overlaps after( (1..5], (1..5] )= false overlaps after( (1..5], [2..5] )= false
-
- finishes( )
-
Returns
true
when an elementA
finishes an elementB
and when the relevant requirements for evaluating totrue
are also met.Signatures-
finishes( point, range )
-
finishes( range1, range2 )
Requirements for evaluating totrue
-
range.end included and range.end = point
-
range1.end included = range2.end included and range1.end = range2.end and ( range1.start > range2.start or (range1.start = range2.start and (not(range1.start included) or range2.start included)) )
Examplesfinishes( 10, [1..10] ) = true finishes( 10, [1..10) ) = false finishes( [5..10], [1..10] ) = true finishes( [5..10), [1..10] ) = false finishes( [5..10), [1..10) ) = true finishes( [1..10], [1..10] ) = true finishes( (1..10], [1..10] ) = true
-
- finished by( )
-
Returns
true
when an elementA
is finished by an elementB
and when the relevant requirements for evaluating totrue
are also met.Signatures-
finished by( range, point )
-
finished by( range1 range2 )
Requirements for evaluating totrue
-
range.end included and range.end = point
-
range1.end included = range2.end included and range1.end = range2.end and ( range1.start < range2.start or (range1.start = range2.start and (range1.start included or not(range2.start included))) )
Examplesfinished by( [1..10], 10 ) = true finished by( [1..10), 10 ) = false finished by( [1..10], [5..10] ) = true finished by( [1..10], [5..10) ) = false finished by( [1..10), [5..10) ) = true finished by( [1..10], [1..10] ) = true finished by( [1..10], (1..10] ) = true
-
- includes( )
-
Returns
true
when an elementA
includes an elementB
and when the relevant requirements for evaluating totrue
are also met.Signatures-
includes( range, point )
-
includes( range1, range2 )
Requirements for evaluating totrue
-
(range.start < point and range.end > point) or (range.start = point and range.start included) or (range.end = point and range.end included)
-
( range1.start < range2.start or (range1.start = range2.start and (range1.start included or not(range2.start included))) ) and ( range1.end > range2.end or (range1.end = range2.end and (range1.end included or not(range2.end included))) )
Examplesincludes( [1..10], 5 ) = true includes( [1..10], 12 ) = false includes( [1..10], 1 ) = true includes( [1..10], 10 ) = true includes( (1..10], 1 ) = false includes( [1..10), 10 ) = false includes( [1..10], [4..6] ) = true includes( [1..10], [1..5] ) = true includes( (1..10], (1..5] ) = true includes( [1..10], (1..10) ) = true includes( [1..10), [5..10) ) = true includes( [1..10], [1..10) ) = true includes( [1..10], (1..10] ) = true includes( [1..10], [1..10] ) = true
-
- during( )
-
Returns
true
when an elementA
is during an elementB
and when the relevant requirements for evaluating totrue
are also met.Signatures-
during( point, range )
-
during( range1 range2 )
Requirements for evaluating totrue
-
(range.start < point and range.end > point) or (range.start = point and range.start included) or (range.end = point and range.end included)
-
( range2.start < range1.start or (range2.start = range1.start and (range2.start included or not(range1.start included))) ) and ( range2.end > range1.end or (range2.end = range1.end and (range2.end included or not(range1.end included))) )
Examplesduring( 5, [1..10] ) = true during( 12, [1..10] ) = false during( 1, [1..10] ) = true during( 10, [1..10] ) = true during( 1, (1..10] ) = false during( 10, [1..10) ) = false during( [4..6], [1..10] ) = true during( [1..5], [1..10] ) = true during( (1..5], (1..10] ) = true during( (1..10), [1..10] ) = true during( [5..10), [1..10) ) = true during( [1..10), [1..10] ) = true during( (1..10], [1..10] ) = true during( [1..10], [1..10] ) = true
-
- starts( )
-
Returns
true
when an elementA
starts an elementB
and when the relevant requirements for evaluating totrue
are also met.Signatures-
starts( point, range )
-
starts( range1, range2 )
Requirements for evaluating totrue
-
range.start = point and range.start included
-
range1.start = range2.start and range1.start included = range2.start included and ( range1.end < range2.end or (range1.end = range2.end and (not(range1.end included) or range2.end included)) )
Examplesstarts( 1, [1..10] ) = true starts( 1, (1..10] ) = false starts( 2, [1..10] ) = false starts( [1..5], [1..10] ) = true starts( (1..5], (1..10] ) = true starts( (1..5], [1..10] ) = false starts( [1..5], (1..10] ) = false starts( [1..10], [1..10] ) = true starts( [1..10), [1..10] ) = true starts( (1..10), (1..10) ) = true
-
- started by( )
-
Returns
true
when an elementA
is started by an elementB
and when the relevant requirements for evaluating totrue
are also met.Signatures-
started by( range, point )
-
started by( range1, range2 )
Requirements for evaluating totrue
-
range.start = point and range.start included
-
range1.start = range2.start and range1.start included = range2.start included and ( range2.end < range1.end or (range2.end = range1.end and (not(range2.end included) or range1.end included)) )
Examplesstarted by( [1..10], 1 ) = true started by( (1..10], 1 ) = false started by( [1..10], 2 ) = false started by( [1..10], [1..5] ) = true started by( (1..10], (1..5] ) = true started by( [1..10], (1..5] ) = false started by( (1..10], [1..5] ) = false started by( [1..10], [1..10] ) = true started by( [1..10], [1..10) ) = true started by( (1..10), (1..10) ) = true
-
- coincides( )
-
Returns
true
when an elementA
coincides with an elementB
and when the relevant requirements for evaluating totrue
are also met.Signatures-
coincides( point1, point2 )
-
coincides( range1, range2 )
Requirements for evaluating totrue
-
point1 = point2
-
range1.start = range2.start and range1.start included = range2.start included and range1.end = range2.end and range1.end included = range2.end included
Examplescoincides( 5, 5 ) = true coincides( 3, 4 ) = false coincides( [1..5], [1..5] ) = true coincides( (1..5), [1..5] ) = false coincides( [1..5], [2..6] ) = false
-
Temporal functions
The following functions support general temporal operations.
- day of year( date )
-
Returns the Gregorian number of the day of the year.
Table 87. Parameters Parameter Type date
date
ordate and time
Exampleday of year( date(2019, 9, 17) ) = 260
- day of week( date )
-
Returns the Gregorian day of the week:
"Monday"
,"Tuesday"
,"Wednesday"
,"Thursday"
,"Friday"
,"Saturday"
, or"Sunday"
.Table 88. Parameters Parameter Type date
date
ordate and time
Exampleday of week( date(2019, 9, 17) ) = "Tuesday"
- month of year( date )
-
Returns the Gregorian month of the year:
"January"
,"February"
,"March"
,"April"
,"May"
,"June"
,"July"
,"August"
,"September"
,"October"
,"November"
, or"December"
.Table 89. Parameters Parameter Type date
date
ordate and time
Examplemonth of year( date(2019, 9, 17) ) = "September"
- month of year( date )
-
Returns the Gregorian week of the year as defined by ISO 8601.
Table 90. Parameters Parameter Type date
date
ordate and time
Examplesweek of year( date(2019, 9, 17) ) = 38 week of year( date(2003, 12, 29) ) = 1 week of year( date(2004, 1, 4) ) = 1 week of year( date(2005, 1, 1) ) = 53 week of year( date(2005, 1, 3) ) = 1 week of year( date(2005, 1, 9) ) = 1
Sort functions
The following functions support sorting operations.
- sort( list, precedes )
-
Returns a list of the same elements but ordered according to the sorting function.
Table 91. Parameters Parameter Type list
list
precedes
function
Examplesort( list: [3,1,4,5,2], precedes: function(x,y) x < y ) = [1,2,3,4,5]
Context functions
The following functions support context operations.
- get value( m, key )
-
Returns the value from the context for the specified entry key.
Table 92. Parameters Parameter Type m
context
key
string
Examplesget value( {key1 : "value1"}, "key1" ) = "value1" get value( {key1 : "value1"}, "unexistent-key" ) = null
- get entries( m )
-
Returns a list of key-value pairs for the specified context.
Table 93. Parameters Parameter Type m
context
Exampleget entries( {key1 : "value1", key2 : "value2"} ) = [ { key : "key1", value : "value1" }, {key : "key2", value : "value2"} ]
- context( entries )
-
Returns a new context that includes all specified entries. If a context item contains additional entries beyond the required "key" and "value" entries, the additional entries are ignored. If a context item is missing the required "key" and "value" entries, the final result is null. See also: get entries() built-in function.
Table 94. Parameters Parameter Type entries
list
ofcontext
, each item SHALL have two entries having keys named "key" and "value" respectivelyExamplescontext([{key:"a", value:1}, {key:"b", value:2}]) = {a:1, b:2} context([{key:"a", value:1}, {key:"b", value:2, something: "else"}]) = {a:1, b:2} context([{key:"a", value:1}, {key:"b"}]) = null
- context put( context, key, value )
-
Returns a new context that includes the new entry, or overrides the existing value if an entry for the same key already exists in the supplied context parameter. A new entry is added as the last entry of the new context. If overriding an existing entry, the order of the keys maintains the same order as in the original context.
Table 95. Parameters Parameter Type context
context
key
string
value
Any
typeExamplescontext put({x:1}, "y", 2) = {x:1, y:2} context put({x:1, y:0}, "y", 2) = {x:1, y:2} context put({x:1, y:0, z:0}, "y", 2) = {x:1, y:2, z:0}
- context put( context, keys, value )
-
Returns the composite of nested invocations to
context put()
for each item inkeys
hierarchy in context.If
keys
is a list of 1 element, this is equivalent tocontext put(context, key', value)
, wherekey'
is the only element in the list keys.If
keys
is a list of 2 or more elements, this is equivalent of callingcontext put(context, key', value')
, with:
key'
is the head element in the list keys,
value'
is the result of invocation ofcontext put(context', keys', value)
, where:
context'
is the result ofcontext.key'
,
keys'
is the remainder of the list keys without the head elementkey'
.If
keys
is an empty list or null, the result is null.Table 96. Parameters Parameter Type context
context
keys
list
ofstring
value
Any
typeExamplescontext put({x:1}, ["y"], 2) = context put({x:1}, "y", 2) context put({x:1}, ["y"], 2) = {x:1, y:2} context put({x:1, y: {a: 0} }, ["y", "a"], 2) = context put({x:1, y: {a: 0} }, "y", context put({a: 0}, ["a"], 2)) context put({x:1, y: {a: 0} }, ["y", "a"], 2) = {x:1, y: {a: 2} } context put({x:1, y: {a: 0} }, [], 2) = null
- context merge( contexts )
-
Returns a new context that includes all entries from the given contexts; if some of the keys are equal, the entries are overridden. The entries are overridden in the same order as specified by the supplied parameter, with new entries added as the last entry in the new context.
Table 97. Parameters Parameter Type contexts
list
ofcontext
Examplescontext merge([{x:1}, {y:2}]) = {x:1, y:2} context merge([{x:1, y:0}, {y:2}]) = {x:1, y:2}
Miscellaneous functions
These functions provide support utilities for several miscellaneous use-cases. For example, when a decision depends on the current date, like deciding the support SLA over the weekends, additional charges for weekend delivery, etc.
It is important to note that the functions in this section are intended to be side-effect-free, but they are not deterministic and not idempotent from the perspective of an external observer.
As a user, you are encouraged to isolate the decision logic that uses these functions in specific DRG elements, such as Decisions. The encapsulation enables them to be overridden with synthetic values during scenario testing, that remain constant across executions of the DMN model’s test cases.
- now()
-
Returns the current
date and time
.Examplesnow()
- today()
-
Returns the current
date
.Examplestoday()
KIE Extended functions
These functions are provided as an extension to the DMN Standard to enable support for various use-cases on top of the Drools DMN Engine.
- invoke( namespace, modelName, decisionName, parameters )
-
Returns the result of the decision evaluation in the specified DMN model available to the
DMNRuntime
environment in the current DMN model is executed.This function is deprecated in favor of encouraging the usage of DMN Standard capabilities wherever possible; since DMNv1.2 it shall be possible to use the DMN standard’s Import functionality to import Business Knowledge Model (BKM) nodes and Decision Service nodes, to be invoked from another model.
Table 98. Parameters Parameter Type namespace
string
modelName
string
decisionName
string
parameter
context
Examplesinvoke( "http://namespace_of_model", "my model name", "my decision name", { a:1, b:2 } )
6.1.3.3. Variable and function names in FEEL
Unlike many traditional expression languages, Friendly Enough Expression Language (FEEL) supports spaces and a few special characters as part of variable and function names. A FEEL name must start with a letter
, ?
, or _
element. The unicode letter characters are also allowed. Variable names cannot start with a language keyword, such as and
, true
, or every
. The remaining characters in a variable name can be any of the starting characters, as well as digits
, white spaces, and special characters such as +
, -
, /
, *
, '
, and .
.
For example, the following names are all valid FEEL names:
-
Age
-
Birth Date
-
Flight 234 pre-check procedure
Several limitations apply to variable and function names in FEEL:
- Ambiguity
-
The use of spaces, keywords, and other special characters as part of names can make FEEL ambiguous. The ambiguities are resolved in the context of the expression, matching names from left to right. The parser resolves the variable name as the longest name matched in scope. You can use
( )
to disambiguate names if necessary. - Spaces in names
-
The DMN specification limits the use of space